ZMod n and quotient groups / rings #
This file relates ZMod n to the quotient group
ℤ / AddSubgroup.zmultiples (n : ℤ) and to the quotient ring
ℤ ⧸ Ideal.span {(n : ℤ)}.
Main definitions #
ZMod.quotientZMultiplesNatEquivZModandZMod.quotientZMultiplesEquivZMod:ZMod nis the group quotient ofℤbyn ℤ := AddSubgroup.zmultiples (n), (wheren : ℕandn : ℤrespectively)ZMod.quotient_span_nat_equiv_zmodandZMod.quotientSpanEquivZMod:ZMod nis the ring quotient ofℤbyn ℤ : Ideal.span {n}(wheren : ℕandn : ℤrespectively)ZMod.lift n fis the map fromZMod ninduced byf : ℤ →+ Athat mapsnto0.
Tags #
zmod, quotient group, quotient ring, ideal quotient
ℤ modulo multiples of n : ℕ is ZMod n.
Equations
- Int.quotientZMultiplesNatEquivZMod n = (QuotientAddGroup.quotientAddEquivOfEq ⋯).symm.trans (QuotientAddGroup.quotientKerEquivOfRightInverse (Int.castAddHom (ZMod n)) ZMod.cast ⋯)
Instances For
ℤ modulo multiples of a : ℤ is ZMod a.natAbs.
Equations
- a.quotientZMultiplesEquivZMod = (QuotientAddGroup.quotientAddEquivOfEq ⋯).symm.trans (Int.quotientZMultiplesNatEquivZMod a.natAbs)
Instances For
ℤ modulo the ideal generated by n : ℕ is ZMod n.
Equations
- Int.quotientSpanNatEquivZMod n = (Ideal.quotEquivOfEq ⋯).symm.trans (RingHom.quotientKerEquivOfRightInverse ⋯)
Instances For
ℤ modulo the ideal generated by a : ℤ is ZMod a.natAbs.
Equations
- a.quotientSpanEquivZMod = (Ideal.quotEquivOfEq ⋯).symm.trans (Int.quotientSpanNatEquivZMod a.natAbs)
Instances For
The Chinese remainder theorem, elementary version for ZMod. See also
Mathlib.Data.ZMod.Basic for versions involving only two numbers.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The quotient (ℤ ∙ a) ⧸ (stabilizer b) is cyclic of order minimalPeriod (a +ᵥ ·) b.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The quotient (a ^ ℤ) ⧸ (stabilizer b) is cyclic of order minimalPeriod ((•) a) b.
Equations
- MulAction.zpowersQuotientStabilizerEquiv a b = AddEquiv.toMultiplicative (AddAction.zmultiplesQuotientStabilizerEquiv (Additive.ofMul a) b)
Instances For
The orbit (a ^ ℤ) • b is a cycle of order minimalPeriod ((•) a) b.
Equations
- MulAction.orbitZPowersEquiv a b = (MulAction.orbitEquivQuotientStabilizer (↥(Subgroup.zpowers a)) b).trans (MulAction.zpowersQuotientStabilizerEquiv a b).toEquiv
Instances For
The orbit (ℤ • a) +ᵥ b is a cycle of order minimalPeriod (a +ᵥ ·) b.
Equations
- AddAction.orbitZMultiplesEquiv a b = (AddAction.orbitEquivQuotientStabilizer (↥(AddSubgroup.zmultiples a)) b).trans (AddAction.zmultiplesQuotientStabilizerEquiv a b).toEquiv
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
See also Fintype.card_zmultiples.
See also Fintype.card_zpowers.
Alias of the reverse direction of finite_zpowers.