Documentation

Mathlib.GroupTheory.GroupAction.Basic

Basic properties of group actions #

This file primarily concerns itself with orbits, stabilizers, and other objects defined in terms of actions. Despite this file being called basic, low-level helper lemmas for algebraic manipulation of belong elsewhere.

Main definitions #

def AddAction.orbit (M : Type u) [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :
Set α

The orbit of an element under an action.

Equations
Instances For
    def MulAction.orbit (M : Type u) [Monoid M] {α : Type v} [MulAction M α] (a : α) :
    Set α

    The orbit of an element under an action.

    Equations
    Instances For
      theorem AddAction.mem_orbit_iff {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a₁ : α} {a₂ : α} :
      a₂ AddAction.orbit M a₁ ∃ (x : M), x +ᵥ a₁ = a₂
      theorem MulAction.mem_orbit_iff {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a₁ : α} {a₂ : α} :
      a₂ MulAction.orbit M a₁ ∃ (x : M), x a₁ = a₂
      @[simp]
      theorem AddAction.mem_orbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (a : α) (m : M) :
      @[simp]
      theorem MulAction.mem_orbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (a : α) (m : M) :
      @[simp]
      theorem AddAction.mem_orbit_self {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :
      @[simp]
      theorem MulAction.mem_orbit_self {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (a : α) :
      theorem AddAction.orbit_nonempty {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :
      (AddAction.orbit M a).Nonempty
      theorem MulAction.orbit_nonempty {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (a : α) :
      (MulAction.orbit M a).Nonempty
      theorem AddAction.mapsTo_vadd_orbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (m : M) (a : α) :
      Set.MapsTo (fun (x : α) => m +ᵥ x) (AddAction.orbit M a) (AddAction.orbit M a)
      theorem MulAction.mapsTo_smul_orbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (m : M) (a : α) :
      Set.MapsTo (fun (x : α) => m x) (MulAction.orbit M a) (MulAction.orbit M a)
      theorem AddAction.vadd_orbit_subset {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (m : M) (a : α) :
      theorem MulAction.smul_orbit_subset {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (m : M) (a : α) :
      theorem AddAction.orbit_vadd_subset {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (m : M) (a : α) :
      theorem MulAction.orbit_smul_subset {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (m : M) (a : α) :
      theorem AddAction.instElemOrbit.proof_1 {M : Type u_2} [AddMonoid M] {α : Type u_1} [AddAction M α] {a : α} (m : (AddAction.orbit M a)) :
      0 +ᵥ m = m
      instance AddAction.instElemOrbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} :
      Equations
      theorem AddAction.instElemOrbit.proof_2 {M : Type u_2} [AddMonoid M] {α : Type u_1} [AddAction M α] {a : α} (m : M) (m' : M) (a' : (AddAction.orbit M a)) :
      m + m' +ᵥ a' = m +ᵥ (m' +ᵥ a')
      instance MulAction.instElemOrbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} :
      Equations
      @[simp]
      theorem AddAction.orbit.coe_vadd {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} {m : M} {a' : (AddAction.orbit M a)} :
      (m +ᵥ a') = m +ᵥ a'
      @[simp]
      theorem MulAction.orbit.coe_smul {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} {m : M} {a' : (MulAction.orbit M a)} :
      (m a') = m a'
      theorem AddAction.orbit_addSubmonoid_subset {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (S : AddSubmonoid M) (a : α) :
      theorem MulAction.orbit_submonoid_subset {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (S : Submonoid M) (a : α) :
      theorem AddAction.mem_orbit_of_mem_orbit_addSubmonoid {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {S : AddSubmonoid M} {a : α} {b : α} (h : a AddAction.orbit (S) b) :
      theorem MulAction.mem_orbit_of_mem_orbit_submonoid {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {S : Submonoid M} {a : α} {b : α} (h : a MulAction.orbit (S) b) :
      theorem AddAction.orbit_eq_univ (M : Type u) [AddMonoid M] {α : Type v} [AddAction M α] [AddAction.IsPretransitive M α] (a : α) :
      AddAction.orbit M a = Set.univ
      theorem MulAction.orbit_eq_univ (M : Type u) [Monoid M] {α : Type v} [MulAction M α] [MulAction.IsPretransitive M α] (a : α) :
      MulAction.orbit M a = Set.univ
      def AddAction.fixedPoints (M : Type u) [AddMonoid M] (α : Type v) [AddAction M α] :
      Set α

      The set of elements fixed under the whole action.

      Equations
      Instances For
        def MulAction.fixedPoints (M : Type u) [Monoid M] (α : Type v) [MulAction M α] :
        Set α

        The set of elements fixed under the whole action.

        Equations
        Instances For
          def AddAction.fixedBy {M : Type u} [AddMonoid M] (α : Type v) [AddAction M α] (m : M) :
          Set α

          fixedBy m is the set of elements fixed by m.

          Equations
          Instances For
            def MulAction.fixedBy {M : Type u} [Monoid M] (α : Type v) [MulAction M α] (m : M) :
            Set α

            fixedBy m is the set of elements fixed by m.

            Equations
            Instances For
              @[simp]
              theorem AddAction.mem_fixedPoints {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} :
              a AddAction.fixedPoints M α ∀ (m : M), m +ᵥ a = a
              @[simp]
              theorem MulAction.mem_fixedPoints {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} :
              a MulAction.fixedPoints M α ∀ (m : M), m a = a
              @[simp]
              theorem AddAction.mem_fixedBy {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {m : M} {a : α} :
              @[simp]
              theorem MulAction.mem_fixedBy {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {m : M} {a : α} :
              abbrev AddAction.mem_fixedPoints'.match_1 {M : Type u_1} [AddMonoid M] {α : Type u_2} [AddAction M α] {a : α} :
              ∀ (x : α) (motive : (∃ (x_1 : M), x_1 +ᵥ a = x)Prop) (x_1 : ∃ (x_1 : M), x_1 +ᵥ a = x), (∀ (m : M) (hm : m +ᵥ a = x), motive )motive x_1
              Equations
              • =
              Instances For
                theorem AddAction.mem_fixedPoints' {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} :
                a AddAction.fixedPoints M α a'AddAction.orbit M a, a' = a
                theorem MulAction.mem_fixedPoints' {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} :
                a MulAction.fixedPoints M α a'MulAction.orbit M a, a' = a
                abbrev AddAction.mem_fixedPoints_iff_card_orbit_eq_one.match_1 {M : Type u_2} [AddMonoid M] {α : Type u_1} [AddAction M α] {a : α} (motive : (AddAction.orbit M a)Prop) :
                ∀ (x : (AddAction.orbit M a)), (∀ (a_1 : α) (x : M) (hx : (fun (m : M) => m +ᵥ a) x = a_1), motive a_1, )motive x
                Equations
                • =
                Instances For
                  theorem AddAction.stabilizerAddSubmonoid.proof_1 (M : Type u_2) [AddMonoid M] {α : Type u_1} [AddAction M α] (a : α) {m : M} {m' : M} (ha : m +ᵥ a = a) (hb : m' +ᵥ a = a) :
                  m + m' +ᵥ a = a
                  def AddAction.stabilizerAddSubmonoid (M : Type u) [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :

                  The stabilizer of a point a as an additive submonoid of M.

                  Equations
                  Instances For
                    def MulAction.stabilizerSubmonoid (M : Type u) [Monoid M] {α : Type v} [MulAction M α] (a : α) :

                    The stabilizer of a point a as a submonoid of M.

                    Equations
                    Instances For
                      @[simp]
                      theorem AddAction.mem_stabilizerAddSubmonoid_iff {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} {m : M} :
                      @[simp]
                      theorem MulAction.mem_stabilizerSubmonoid_iff {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} {m : M} :
                      def FixedPoints.submonoid (M : Type u) (α : Type v) [Monoid M] [Monoid α] [MulDistribMulAction M α] :

                      The submonoid of elements fixed under the whole action.

                      Equations
                      Instances For
                        @[simp]
                        theorem FixedPoints.mem_submonoid (M : Type u) (α : Type v) [Monoid M] [Monoid α] [MulDistribMulAction M α] (a : α) :
                        a FixedPoints.submonoid M α ∀ (m : M), m a = a
                        def FixedPoints.subgroup (M : Type u) (α : Type v) [Monoid M] [Group α] [MulDistribMulAction M α] :

                        The subgroup of elements fixed under the whole action.

                        Equations
                        Instances For

                          The notation for FixedPoints.subgroup, chosen to resemble αᴹ.

                          Equations
                          Instances For
                            @[simp]
                            theorem FixedPoints.mem_subgroup (M : Type u) (α : Type v) [Monoid M] [Group α] [MulDistribMulAction M α] (a : α) :
                            a α^*M ∀ (m : M), m a = a
                            @[simp]
                            theorem FixedPoints.subgroup_toSubmonoid (M : Type u) (α : Type v) [Monoid M] [Group α] [MulDistribMulAction M α] :
                            (α^*M).toSubmonoid = FixedPoints.submonoid M α

                            The additive submonoid of elements fixed under the whole action.

                            Equations
                            Instances For
                              @[simp]
                              theorem FixedPoints.mem_addSubmonoid (M : Type u) (α : Type v) [Monoid M] [AddMonoid α] [DistribMulAction M α] (a : α) :
                              a FixedPoints.addSubmonoid M α ∀ (m : M), m a = a

                              The additive subgroup of elements fixed under the whole action.

                              Equations
                              Instances For

                                The notation for FixedPoints.addSubgroup, chosen to resemble αᴹ.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem FixedPoints.mem_addSubgroup (M : Type u) (α : Type v) [Monoid M] [AddGroup α] [DistribMulAction M α] (a : α) :
                                  a α^+M ∀ (m : M), m a = a
                                  @[simp]
                                  theorem FixedPoints.addSubgroup_toAddSubmonoid (M : Type u) (α : Type v) [Monoid M] [AddGroup α] [DistribMulAction M α] :
                                  (α^+M).toAddSubmonoid = FixedPoints.addSubmonoid M α
                                  theorem smul_cancel_of_non_zero_divisor {M : Type u_1} {R : Type u_2} [Monoid M] [NonUnitalNonAssocRing R] [DistribMulAction M R] (k : M) (h : ∀ (x : R), k x = 0x = 0) {a : R} {b : R} (h' : k a = k b) :
                                  a = b

                                  smul by a k : M over a ring is injective, if k is not a zero divisor. The general theory of such k is elaborated by IsSMulRegular. The typeclass that restricts all terms of M to have this property is NoZeroSMulDivisors.

                                  @[simp]
                                  theorem AddAction.vadd_orbit {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                                  @[simp]
                                  theorem MulAction.smul_orbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :
                                  @[simp]
                                  theorem AddAction.orbit_vadd {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                                  @[simp]
                                  theorem MulAction.orbit_smul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :

                                  The action of an additive group on an orbit is transitive.

                                  Equations
                                  • =
                                  instance MulAction.instIsPretransitiveElemOrbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (a : α) :

                                  The action of a group on an orbit is transitive.

                                  Equations
                                  • =
                                  abbrev AddAction.orbit_eq_iff.match_1 {G : Type u_2} {α : Type u_1} [AddGroup G] [AddAction G α] {a : α} {b : α} (motive : a AddAction.orbit G bProp) :
                                  ∀ (x : a AddAction.orbit G b), (∀ (w : G) (hc : (fun (m : G) => m +ᵥ b) w = a), motive )motive x
                                  Equations
                                  • =
                                  Instances For
                                    theorem AddAction.orbit_eq_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {b : α} :
                                    theorem MulAction.orbit_eq_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {b : α} :
                                    theorem AddAction.mem_orbit_vadd {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                                    theorem MulAction.mem_orbit_smul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :
                                    theorem AddAction.vadd_mem_orbit_vadd {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (h : G) (a : α) :
                                    theorem MulAction.smul_mem_orbit_smul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (h : G) (a : α) :
                                    theorem AddAction.orbit_addSubgroup_subset {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (H : AddSubgroup G) (a : α) :
                                    theorem MulAction.orbit_subgroup_subset {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (H : Subgroup G) (a : α) :
                                    theorem AddAction.mem_orbit_of_mem_orbit_addSubgroup {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {a : α} {b : α} (h : a AddAction.orbit (H) b) :
                                    theorem MulAction.mem_orbit_of_mem_orbit_subgroup {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {a : α} {b : α} (h : a MulAction.orbit (H) b) :
                                    theorem AddAction.mem_orbit_symm {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a₁ : α} {a₂ : α} :
                                    a₁ AddAction.orbit G a₂ a₂ AddAction.orbit G a₁
                                    theorem MulAction.mem_orbit_symm {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a₁ : α} {a₂ : α} :
                                    a₁ MulAction.orbit G a₂ a₂ MulAction.orbit G a₁
                                    theorem AddAction.mem_addSubgroup_orbit_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {x : α} {a : (AddAction.orbit G x)} {b : (AddAction.orbit G x)} :
                                    a AddAction.orbit (H) b a AddAction.orbit H b
                                    theorem MulAction.mem_subgroup_orbit_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {x : α} {a : (MulAction.orbit G x)} {b : (MulAction.orbit G x)} :
                                    a MulAction.orbit (H) b a MulAction.orbit H b
                                    theorem AddAction.orbitRel.proof_1 (G : Type u_2) (α : Type u_1) [AddGroup G] [AddAction G α] :
                                    Equivalence fun (a b : α) => a AddAction.orbit G b
                                    def AddAction.orbitRel (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] :

                                    The relation 'in the same orbit'.

                                    Equations
                                    Instances For
                                      def MulAction.orbitRel (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :

                                      The relation 'in the same orbit'.

                                      Equations
                                      Instances For
                                        theorem AddAction.orbitRel_apply {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {b : α} :
                                        theorem MulAction.orbitRel_apply {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {b : α} :
                                        theorem MulAction.orbitRel_subgroup_le {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (H : Subgroup G) :
                                        theorem AddAction.quotient_preimage_image_eq_union_add {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (U : Set α) :
                                        Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun (x : α) => g +ᵥ x) '' U

                                        When you take a set U in α, push it down to the quotient, and pull back, you get the union of the orbit of U under G.

                                        theorem MulAction.quotient_preimage_image_eq_union_mul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (U : Set α) :
                                        Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun (x : α) => g x) '' U

                                        When you take a set U in α, push it down to the quotient, and pull back, you get the union of the orbit of U under G.

                                        theorem AddAction.disjoint_image_image_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {U : Set α} {V : Set α} :
                                        Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) xU, ∀ (g : G), g +ᵥ xV
                                        theorem MulAction.disjoint_image_image_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {U : Set α} {V : Set α} :
                                        Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) xU, ∀ (g : G), g xV
                                        theorem AddAction.image_inter_image_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (U : Set α) (V : Set α) :
                                        Quotient.mk' '' U Quotient.mk' '' V = xU, ∀ (g : G), g +ᵥ xV
                                        theorem MulAction.image_inter_image_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (U : Set α) (V : Set α) :
                                        Quotient.mk' '' U Quotient.mk' '' V = xU, ∀ (g : G), g xV
                                        @[reducible]
                                        def AddAction.orbitRel.Quotient (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] :
                                        Type u_2

                                        The quotient by AddAction.orbitRel, given a name to enable dot notation.

                                        Equations
                                        Instances For
                                          @[reducible]
                                          def MulAction.orbitRel.Quotient (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :
                                          Type u_2

                                          The quotient by MulAction.orbitRel, given a name to enable dot notation.

                                          Equations
                                          Instances For

                                            An additive action is pretransitive if and only if the quotient by AddAction.orbitRel is a subsingleton.

                                            An action is pretransitive if and only if the quotient by MulAction.orbitRel is a subsingleton.

                                            If α is non-empty, an additive action is pretransitive if and only if the quotient has exactly one element.

                                            If α is non-empty, an action is pretransitive if and only if the quotient has exactly one element.

                                            theorem AddAction.orbitRel.Quotient.orbit.proof_1 {G : Type u_2} {α : Type u_1} [AddGroup G] [AddAction G α] :
                                            ∀ (x x_1 : α), x AddAction.orbit G x_1AddAction.orbit G x = AddAction.orbit G x_1

                                            The orbit corresponding to an element of the quotient by AddAction.orbitRel

                                            Equations
                                            Instances For
                                              def MulAction.orbitRel.Quotient.orbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (x : MulAction.orbitRel.Quotient G α) :
                                              Set α

                                              The orbit corresponding to an element of the quotient by MulAction.orbitRel

                                              Equations
                                              Instances For
                                                theorem AddAction.orbitRel.Quotient.mem_orbit {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {x : AddAction.orbitRel.Quotient G α} :
                                                a x.orbit Quotient.mk'' a = x
                                                theorem MulAction.orbitRel.Quotient.mem_orbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {x : MulAction.orbitRel.Quotient G α} :
                                                a x.orbit Quotient.mk'' a = x
                                                theorem AddAction.orbitRel.Quotient.orbit_eq_orbit_out {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (x : AddAction.orbitRel.Quotient G α) {φ : AddAction.orbitRel.Quotient G αα} (hφ : Function.RightInverse φ Quotient.mk') :
                                                x.orbit = AddAction.orbit G (φ x)

                                                Note that hφ = Quotient.out_eq' is a useful choice here.

                                                theorem MulAction.orbitRel.Quotient.orbit_eq_orbit_out {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (x : MulAction.orbitRel.Quotient G α) {φ : MulAction.orbitRel.Quotient G αα} (hφ : Function.RightInverse φ Quotient.mk') :
                                                x.orbit = MulAction.orbit G (φ x)

                                                Note that hφ = Quotient.out_eq' is a useful choice here.

                                                theorem AddAction.selfEquivSigmaOrbits'.proof_1 (G : Type u_2) (α : Type u_1) [AddGroup G] [AddAction G α] :
                                                ∀ (x : AddAction.orbitRel.Quotient G α) (x_1 : α), Quotient.mk'' x_1 = x x_1 x.orbit
                                                def AddAction.selfEquivSigmaOrbits' (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] :
                                                α (ω : AddAction.orbitRel.Quotient G α) × ω.orbit

                                                Decomposition of a type X as a disjoint union of its orbits under an additive group action.

                                                This version is expressed in terms of AddAction.orbitRel.Quotient.orbit instead of AddAction.orbit, to avoid mentioning Quotient.out'.

                                                Equations
                                                Instances For
                                                  def MulAction.selfEquivSigmaOrbits' (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :
                                                  α (ω : MulAction.orbitRel.Quotient G α) × ω.orbit

                                                  Decomposition of a type X as a disjoint union of its orbits under a group action.

                                                  This version is expressed in terms of MulAction.orbitRel.Quotient.orbit instead of MulAction.orbit, to avoid mentioning Quotient.out'.

                                                  Equations
                                                  Instances For

                                                    Decomposition of a type X as a disjoint union of its orbits under an additive group action.

                                                    Equations
                                                    Instances For
                                                      def MulAction.selfEquivSigmaOrbits (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :

                                                      Decomposition of a type X as a disjoint union of its orbits under a group action.

                                                      Equations
                                                      Instances For
                                                        def AddAction.stabilizer (G : Type u_1) {α : Type u_2} [AddGroup G] [AddAction G α] (a : α) :

                                                        The stabilizer of an element under an action, i.e. what sends the element to itself. An additive subgroup.

                                                        Equations
                                                        Instances For
                                                          theorem AddAction.stabilizer.proof_1 (G : Type u_2) {α : Type u_1} [AddGroup G] [AddAction G α] (a : α) {m : G} (ha : m +ᵥ a = a) :
                                                          -m +ᵥ a = a
                                                          def MulAction.stabilizer (G : Type u_1) {α : Type u_2} [Group G] [MulAction G α] (a : α) :

                                                          The stabilizer of an element under an action, i.e. what sends the element to itself. A subgroup.

                                                          Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem AddAction.mem_stabilizer_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {g : G} :
                                                            @[simp]
                                                            theorem MulAction.mem_stabilizer_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {g : G} :
                                                            theorem AddAction.le_stabilizer_vadd_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup G] [AddAction G α] [AddAction G β] [VAdd α β] [VAddAssocClass G α β] (a : α) (b : β) :
                                                            theorem MulAction.le_stabilizer_smul_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [Group G] [MulAction G α] [MulAction G β] [SMul α β] [IsScalarTower G α β] (a : α) (b : β) :
                                                            theorem AddAction.le_stabilizer_vadd_right {G : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup G] [AddAction G β] [VAdd α β] [VAddCommClass G α β] (a : α) (b : β) :
                                                            theorem MulAction.le_stabilizer_smul_right {G : Type u_1} {α : Type u_2} {β : Type u_3} [Group G] [MulAction G β] [SMul α β] [SMulCommClass G α β] (a : α) (b : β) :
                                                            @[simp]
                                                            theorem AddAction.stabilizer_vadd_eq_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup G] [AddAction G α] [AddAction G β] [VAdd α β] [VAddAssocClass G α β] (a : α) (b : β) (h : Function.Injective fun (x : α) => x +ᵥ b) :
                                                            @[simp]
                                                            theorem MulAction.stabilizer_smul_eq_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [Group G] [MulAction G α] [MulAction G β] [SMul α β] [IsScalarTower G α β] (a : α) (b : β) (h : Function.Injective fun (x : α) => x b) :
                                                            @[simp]
                                                            theorem AddAction.stabilizer_vadd_eq_right {G : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup G] [AddAction G β] [AddGroup α] [AddAction α β] [VAddCommClass G α β] (a : α) (b : β) :
                                                            @[simp]
                                                            theorem MulAction.stabilizer_smul_eq_right {G : Type u_1} {α : Type u_2} {β : Type u_3} [Group G] [MulAction G β] [Group α] [MulAction α β] [SMulCommClass G α β] (a : α) (b : β) :
                                                            @[simp]
                                                            theorem AddAction.stabilizer_add_eq_left {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] [AddGroup α] [VAddAssocClass G α α] (a : α) (b : α) :
                                                            @[simp]
                                                            theorem MulAction.stabilizer_mul_eq_left {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] [Group α] [IsScalarTower G α α] (a : α) (b : α) :
                                                            @[simp]
                                                            theorem AddAction.stabilizer_add_eq_right {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] [AddGroup α] [VAddCommClass G α α] (a : α) (b : α) :
                                                            @[simp]
                                                            theorem MulAction.stabilizer_mul_eq_right {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] [Group α] [SMulCommClass G α α] (a : α) (b : α) :
                                                            theorem MulAction.stabilizer_smul_eq_stabilizer_map_conj {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :

                                                            If the stabilizer of a is S, then the stabilizer of g • a is gSg⁻¹.

                                                            noncomputable def MulAction.stabilizerEquivStabilizerOfOrbitRel {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {b : α} (h : (MulAction.orbitRel G α).Rel a b) :

                                                            A bijection between the stabilizers of two elements in the same orbit.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For

                                                              If the stabilizer of x is S, then the stabilizer of g +ᵥ x is g + S + (-g).

                                                              noncomputable def AddAction.stabilizerEquivStabilizerOfOrbitRel {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {b : α} (h : (AddAction.orbitRel G α).Rel a b) :

                                                              A bijection between the stabilizers of two elements in the same orbit.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                theorem Equiv.swap_mem_stabilizer {α : Type u_1} [DecidableEq α] {S : Set α} {a : α} {b : α} :