Documentation

Mathlib.Algebra.Group.Equiv.TypeTags

Additive and multiplicative equivalences associated to Multiplicative and Additive. #

@[simp]
theorem AddEquiv.toMultiplicative_symm_apply_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [AddZeroClass H] (f : Multiplicative G ≃* Multiplicative H) (a : G) :
(AddEquiv.toMultiplicative.symm f) a = (AddMonoidHom.toMultiplicative.symm f.toMonoidHom) a
@[simp]
theorem AddEquiv.toMultiplicative_apply_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [AddZeroClass H] (f : G ≃+ H) (a : Multiplicative G) :
(AddEquiv.toMultiplicative f) a = (AddMonoidHom.toMultiplicative f.toAddMonoidHom) a
@[simp]
theorem AddEquiv.toMultiplicative_symm_apply_symm_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [AddZeroClass H] (f : Multiplicative G ≃* Multiplicative H) (a : H) :
(AddEquiv.toMultiplicative.symm f).symm a = (AddMonoidHom.toMultiplicative.symm f.symm.toMonoidHom) a
@[simp]
theorem AddEquiv.toMultiplicative_apply_symm_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [AddZeroClass H] (f : G ≃+ H) (a : Multiplicative H) :
(AddEquiv.toMultiplicative f).symm a = (AddMonoidHom.toMultiplicative f.symm.toAddMonoidHom) a

Reinterpret G ≃+ H as Multiplicative G ≃* Multiplicative H.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem MulEquiv.toAdditive_symm_apply_symm_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [MulOneClass H] (f : Additive G ≃+ Additive H) (a : H) :
    (MulEquiv.toAdditive.symm f).symm a = (MonoidHom.toAdditive.symm f.symm.toAddMonoidHom) a
    @[simp]
    theorem MulEquiv.toAdditive_symm_apply_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [MulOneClass H] (f : Additive G ≃+ Additive H) (a : G) :
    (MulEquiv.toAdditive.symm f) a = (MonoidHom.toAdditive.symm f.toAddMonoidHom) a
    @[simp]
    theorem MulEquiv.toAdditive_apply_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [MulOneClass H] (f : G ≃* H) (a : Additive G) :
    (MulEquiv.toAdditive f) a = (MonoidHom.toAdditive f.toMonoidHom) a
    @[simp]
    theorem MulEquiv.toAdditive_apply_symm_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [MulOneClass H] (f : G ≃* H) (a : Additive H) :
    (MulEquiv.toAdditive f).symm a = (MonoidHom.toAdditive f.symm.toMonoidHom) a
    def MulEquiv.toAdditive {G : Type u_1} {H : Type u_2} [MulOneClass G] [MulOneClass H] :

    Reinterpret G ≃* H as Additive G ≃+ Additive H.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem AddEquiv.toMultiplicative'_apply_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [AddZeroClass H] (f : Additive G ≃+ H) (a : G) :
      (AddEquiv.toMultiplicative' f) a = (AddMonoidHom.toMultiplicative' f.toAddMonoidHom) a
      @[simp]
      theorem AddEquiv.toMultiplicative'_symm_apply_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [AddZeroClass H] (f : G ≃* Multiplicative H) (a : Additive G) :
      (AddEquiv.toMultiplicative'.symm f) a = (AddMonoidHom.toMultiplicative'.symm f.toMonoidHom) a
      @[simp]
      theorem AddEquiv.toMultiplicative'_symm_apply_symm_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [AddZeroClass H] (f : G ≃* Multiplicative H) (a : H) :
      (AddEquiv.toMultiplicative'.symm f).symm a = (AddMonoidHom.toMultiplicative''.symm f.symm.toMonoidHom) a
      @[simp]
      theorem AddEquiv.toMultiplicative'_apply_symm_apply {G : Type u_1} {H : Type u_2} [MulOneClass G] [AddZeroClass H] (f : Additive G ≃+ H) (a : Multiplicative H) :
      (AddEquiv.toMultiplicative' f).symm a = (AddMonoidHom.toMultiplicative'' f.symm.toAddMonoidHom) a

      Reinterpret Additive G ≃+ H as G ≃* Multiplicative H.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]

        Reinterpret G ≃* Multiplicative H as Additive G ≃+ H as.

        Equations
        • MulEquiv.toAdditive' = AddEquiv.toMultiplicative'.symm
        Instances For
          @[simp]
          theorem AddEquiv.toMultiplicative''_apply_symm_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [MulOneClass H] (f : G ≃+ Additive H) (a : H) :
          (AddEquiv.toMultiplicative'' f).symm a = (AddMonoidHom.toMultiplicative' f.symm.toAddMonoidHom) a
          @[simp]
          theorem AddEquiv.toMultiplicative''_symm_apply_symm_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [MulOneClass H] (f : Multiplicative G ≃* H) (a : Additive H) :
          (AddEquiv.toMultiplicative''.symm f).symm a = (AddMonoidHom.toMultiplicative'.symm f.symm.toMonoidHom) a
          @[simp]
          theorem AddEquiv.toMultiplicative''_symm_apply_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [MulOneClass H] (f : Multiplicative G ≃* H) (a : G) :
          (AddEquiv.toMultiplicative''.symm f) a = (AddMonoidHom.toMultiplicative''.symm f.toMonoidHom) a
          @[simp]
          theorem AddEquiv.toMultiplicative''_apply_apply {G : Type u_1} {H : Type u_2} [AddZeroClass G] [MulOneClass H] (f : G ≃+ Additive H) (a : Multiplicative G) :
          (AddEquiv.toMultiplicative'' f) a = (AddMonoidHom.toMultiplicative'' f.toAddMonoidHom) a

          Reinterpret G ≃+ Additive H as Multiplicative G ≃* H.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[reducible, inline]

            Reinterpret Multiplicative G ≃* H as G ≃+ Additive H as.

            Equations
            • MulEquiv.toAdditive'' = AddEquiv.toMultiplicative''.symm
            Instances For
              @[simp]
              theorem monoidEndToAdditive_symm_apply_apply (M : Type u_3) [MulOneClass M] (f : Additive M →+ Additive M) (a : M) :
              ((monoidEndToAdditive M).symm f) a = Additive.toMul (f (Additive.ofMul a))
              @[simp]
              theorem monoidEndToAdditive_apply_apply (M : Type u_3) [MulOneClass M] (f : M →* M) (a : Additive M) :
              ((monoidEndToAdditive M) f) a = Additive.ofMul (f (Additive.toMul a))

              Multiplicative equivalence between multiplicative endomorphisms of a MulOneClass M and additive endomorphisms of Additive M.

              Equations
              Instances For
                @[simp]
                theorem addMonoidEndToMultiplicative_apply_apply (A : Type u_3) [AddZeroClass A] (f : A →+ A) (a : Multiplicative A) :
                ((addMonoidEndToMultiplicative A) f) a = Multiplicative.ofAdd (f (Multiplicative.toAdd a))
                @[simp]
                theorem addMonoidEndToMultiplicative_symm_apply_apply (A : Type u_3) [AddZeroClass A] (f : Multiplicative A →* Multiplicative A) (a : A) :
                ((addMonoidEndToMultiplicative A).symm f) a = Multiplicative.toAdd (f (Multiplicative.ofAdd a))

                Multiplicative equivalence between additive endomorphisms of an AddZeroClass A and multiplicative endomorphisms of Multiplicative A.

                Equations
                Instances For
                  @[simp]
                  theorem AddEquiv.additiveMultiplicative_apply (G : Type u_1) [AddZeroClass G] (a : Additive (Multiplicative G)) :
                  (AddEquiv.additiveMultiplicative G) a = Multiplicative.toAdd (Additive.toMul a)
                  @[simp]
                  theorem AddEquiv.additiveMultiplicative_symm_apply (G : Type u_1) [AddZeroClass G] (a : G) :
                  (AddEquiv.additiveMultiplicative G).symm a = Additive.ofMul (Multiplicative.ofAdd a)

                  Additive (Multiplicative G) is just G.

                  Equations
                  Instances For
                    @[simp]
                    theorem MulEquiv.multiplicativeAdditive_symm_apply (H : Type u_2) [MulOneClass H] (a : H) :
                    (MulEquiv.multiplicativeAdditive H).symm a = Multiplicative.ofAdd (Additive.ofMul a)
                    @[simp]
                    theorem MulEquiv.multiplicativeAdditive_apply (H : Type u_2) [MulOneClass H] (a : Multiplicative (Additive H)) :
                    (MulEquiv.multiplicativeAdditive H) a = Additive.toMul (Multiplicative.toAdd a)

                    Multiplicative (Additive H) is just H.

                    Equations
                    Instances For