Documentation

SampCert.Foundations.Until

probUntil Properties #

This file proves evaluation and normalization results about probUntil.

Implementation Notes #

Many lemmas in this file deal are stated for truncations of the probUntil program to a finite number of attempts. Because this term is not used outside this file, we will not factor out an explicit probUntilCut term.

@[simp]
theorem SLang.probUntilCut_zero {T : Type} (st : T) (body : SLang T) (cond : TBool) (x : T) :
SLang.probWhileCut (fun (v : T) => decide (cond v = false)) (fun (x : T) => body) 0 st x = 0

Truncation of probUntil program to zero unrollings is identically zero.

@[simp]
theorem SLang.probUntilCut_apply_unsat {T : Type} (body : SLang T) (cond : TBool) (fuel : ) (i : T) (x : T) (h : ¬cond x = true) :
SLang.probWhileCut (fun (v : T) => decide (cond v = false)) (fun (x : T) => body) fuel i x = 0

Truncation of probUntil program to any number of unrollings will evaluate to zero, for values which do not satisfy cond.

@[simp]
theorem SLang.probUntil_apply_unsat {T : Type} (body : SLang T) (cond : TBool) (x : T) (h : ¬cond x = true) :
body.probUntil cond x = 0

probUntil evaluates to zero at all values which do not satisfy cond.

theorem SLang.if_simpl {T : Type} (body : SLang T) (cond : TBool) (x_1 : T) (x : T) :
(if x_1 = x then 0 else if cond x_1 = true then if x = x_1 then body x_1 else 0 else 0) = 0
theorem SLang.repeat_1 {T : Type} (body : SLang T) (cond : TBool) (x : T) (h : cond x = true) :
∑' (i : T), body i * SLang.probWhileCut (fun (v : T) => decide (cond v = false)) (fun (x : T) => body) 1 i x = body x
theorem SLang.tsum_split_ite_exp {T : Type} (cond : TBool) (f : TENNReal) (g : TENNReal) :
(∑' (i : T), if cond i = false then f i else g i) = (∑' (i : T), if cond i = false then f i else 0) + ∑' (i : T), if cond i = true then g i else 0
theorem SLang.probUntilCut_closed_form {T : Type} (body : SLang T) (cond : TBool) (fuel : ) (x : T) (h1 : cond x = true) :
∑' (i : T), body i * SLang.probWhileCut (fun (v : T) => decide (cond v = false)) (fun (x : T) => body) fuel i x = iFinset.range fuel, body x * (∑' (x : T), if cond x = true then 0 else body x) ^ i
theorem SLang.probUntilCut_convergence {T : Type} (body : SLang T) (cond : TBool) (x : T) :
⨆ (fuel : ), iFinset.range fuel, body x * (∑' (x : T), if cond x = true then 0 else body x) ^ i = body x * (1 - ∑' (x : T), if cond x = true then 0 else body x)⁻¹

Expression for the limit of the closed form of truncated until

theorem SLang.probUntilCut_monotone {T : Type} (body : SLang T) (cond : TBool) (x : T) (a : T) :
Monotone fun (i : ) => body a * SLang.probWhileCut (fun (v : T) => decide (cond v = false)) (fun (x : T) => body) i a x

Truncated until term is monotone in the maximum number of steps.

@[simp]
theorem SLang.probUntil_apply_sat {T : Type} (body : SLang T) (cond : TBool) (x : T) (h : cond x = true) :
body.probUntil cond x = body x * (1 - ∑' (x : T), if cond x = true then 0 else body x)⁻¹

until term evaluates to body, normalizing by the total mass of elements which satisfy cond.

@[simp]
theorem SLang.probUntil_apply {T : Type} (body : SLang T) (cond : TBool) (x : T) :
body.probUntil cond x = (if cond x = true then body x else 0) * (1 - ∑' (x : T), if cond x = true then 0 else body x)⁻¹

Closed form for evaluation of until. until is:

  • zero outside support of cond
  • body inside the support of cond rescaled by the total mass outside the support of cond.
@[simp]
theorem SLang.probUntil_apply_norm {T : Type} (body : SLang T) (cond : TBool) (x : T) (norm : ∑' (x : T), body x = 1) :
body.probUntil cond x = (if cond x = true then body x else 0) * (∑' (x : T), if cond x = true then body x else 0)⁻¹

When body is a proper PMF, until is

  • zero outside the support of cond
  • body inside the support of cond normalized into a PMF.