Topological structure on EReal
#
We endow EReal
with the order topology, and prove basic properties of this topology.
Main results #
Real.toEReal : ℝ → EReal
is an open embeddingENNReal.toEReal : ℝ≥0∞ → EReal
is a closed embedding- The addition on
EReal
is continuous except at(⊥, ⊤)
and at(⊤, ⊥)
. - Negation is a homeomorphism on
EReal
.
Implementation #
Most proofs are adapted from the corresponding proofs on ℝ≥0∞
.
Real coercion #
theorem
EReal.tendsto_coe
{α : Type u_2}
{f : Filter α}
{m : α → ℝ}
{a : ℝ}
:
Filter.Tendsto (fun (a : α) => ↑(m a)) f (nhds ↑a) ↔ Filter.Tendsto m f (nhds a)
theorem
EReal.continuous_coe_iff
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℝ}
:
(Continuous fun (a : α) => ↑(f a)) ↔ Continuous f
theorem
EReal.tendsto_toReal
{a : EReal}
(ha : a ≠ ⊤)
(h'a : a ≠ ⊥)
:
Filter.Tendsto EReal.toReal (nhds a) (nhds a.toReal)
The set of finite EReal
numbers is homeomorphic to ℝ
.
Equations
- EReal.neBotTopHomeomorphReal = { toEquiv := EReal.neTopBotEquivReal, continuous_toFun := EReal.neBotTopHomeomorphReal.proof_1, continuous_invFun := EReal.neBotTopHomeomorphReal.proof_2 }
Instances For
ennreal coercion #
theorem
EReal.tendsto_coe_ennreal
{α : Type u_2}
{f : Filter α}
{m : α → ENNReal}
{a : ENNReal}
:
Filter.Tendsto (fun (a : α) => ↑(m a)) f (nhds ↑a) ↔ Filter.Tendsto m f (nhds a)
theorem
EReal.continuous_coe_ennreal_iff
{α : Type u_1}
[TopologicalSpace α]
{f : α → ENNReal}
:
(Continuous fun (a : α) => ↑(f a)) ↔ Continuous f
Neighborhoods of infinity #
Continuity of addition #
theorem
EReal.continuousAt_add_coe_coe
(a : ℝ)
(b : ℝ)
:
ContinuousAt (fun (p : EReal × EReal) => p.1 + p.2) (↑a, ↑b)