Documentation

Mathlib.Topology.Algebra.Module.Multilinear.Topology

Topology on continuous multilinear maps #

In this file we define TopologicalSpace and UniformSpace structures on ContinuousMultilinearMap ๐•œ E F, where E i is a family of vector spaces over ๐•œ with topologies and F is a topological vector space.

def ContinuousMultilinearMap.toUniformOnFun {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] (f : ContinuousMultilinearMap ๐•œ E F) :
UniformOnFun ((i : ฮน) โ†’ E i) F {s : Set ((i : ฮน) โ†’ E i) | Bornology.IsVonNBounded ๐•œ s}

An auxiliary definition used to define topology on ContinuousMultilinearMap ๐•œ E F.

Equations
Instances For
    @[simp]
    theorem ContinuousMultilinearMap.toUniformOnFun_toFun {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] (f : ContinuousMultilinearMap ๐•œ E F) :
    (UniformOnFun.toFun {s : Set ((i : ฮน) โ†’ E i) | Bornology.IsVonNBounded ๐•œ s}) f.toUniformOnFun = โ‡‘f
    instance ContinuousMultilinearMap.instTopologicalSpace {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] :
    Equations
    • One or more equations did not get rendered due to their size.
    instance ContinuousMultilinearMap.instUniformSpace {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [UniformSpace F] [UniformAddGroup F] :
    Equations
    • One or more equations did not get rendered due to their size.
    theorem ContinuousMultilinearMap.uniformEmbedding_toUniformOnFun {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [UniformSpace F] [UniformAddGroup F] :
    UniformEmbedding ContinuousMultilinearMap.toUniformOnFun
    theorem ContinuousMultilinearMap.embedding_toUniformOnFun {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [UniformSpace F] [UniformAddGroup F] :
    Embedding ContinuousMultilinearMap.toUniformOnFun
    theorem ContinuousMultilinearMap.uniformContinuous_coe_fun {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [UniformSpace F] [UniformAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] :
    UniformContinuous DFunLike.coe
    theorem ContinuousMultilinearMap.uniformContinuous_eval_const {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [UniformSpace F] [UniformAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] (x : (i : ฮน) โ†’ E i) :
    UniformContinuous fun (f : ContinuousMultilinearMap ๐•œ E F) => f x
    instance ContinuousMultilinearMap.instUniformAddGroup {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [UniformSpace F] [UniformAddGroup F] :
    Equations
    • โ‹ฏ = โ‹ฏ
    instance ContinuousMultilinearMap.instUniformContinuousConstSMul {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [UniformSpace F] [UniformAddGroup F] {M : Type u_5} [Monoid M] [DistribMulAction M F] [SMulCommClass ๐•œ M F] [ContinuousConstSMul M F] :
    Equations
    • โ‹ฏ = โ‹ฏ
    instance ContinuousMultilinearMap.instContinuousConstSMul {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] {M : Type u_5} [Monoid M] [DistribMulAction M F] [SMulCommClass ๐•œ M F] [ContinuousConstSMul M F] :
    Equations
    • โ‹ฏ = โ‹ฏ
    instance ContinuousMultilinearMap.instContinuousSMul {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul ๐•œ F] :
    ContinuousSMul ๐•œ (ContinuousMultilinearMap ๐•œ E F)
    Equations
    • โ‹ฏ = โ‹ฏ
    theorem ContinuousMultilinearMap.hasBasis_nhds_zero_of_basis {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮนโœ โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮนโœ) โ†’ TopologicalSpace (E i)] [(i : ฮนโœ) โ†’ AddCommGroup (E i)] [(i : ฮนโœ) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] {ฮน : Type u_5} {p : ฮน โ†’ Prop} {b : ฮน โ†’ Set F} (h : (nhds 0).HasBasis p b) :
    (nhds 0).HasBasis (fun (Si : Set ((i : ฮนโœ) โ†’ E i) ร— ฮน) => Bornology.IsVonNBounded ๐•œ Si.1 โˆง p Si.2) fun (Si : Set ((i : ฮนโœ) โ†’ E i) ร— ฮน) => {f : ContinuousMultilinearMap ๐•œ E F | Set.MapsTo (โ‡‘f) Si.1 (b Si.2)}
    theorem ContinuousMultilinearMap.hasBasis_nhds_zero {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] :
    (nhds 0).HasBasis (fun (SV : Set ((i : ฮน) โ†’ E i) ร— Set F) => Bornology.IsVonNBounded ๐•œ SV.1 โˆง SV.2 โˆˆ nhds 0) fun (SV : Set ((i : ฮน) โ†’ E i) ร— Set F) => {f : ContinuousMultilinearMap ๐•œ E F | Set.MapsTo (โ‡‘f) SV.1 SV.2}
    theorem ContinuousMultilinearMap.continuous_eval_const {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] (x : (i : ฮน) โ†’ E i) :
    Continuous fun (p : ContinuousMultilinearMap ๐•œ E F) => p x
    @[deprecated ContinuousMultilinearMap.continuous_eval_const]
    theorem ContinuousMultilinearMap.continuous_eval_left {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] (x : (i : ฮน) โ†’ E i) :
    Continuous fun (p : ContinuousMultilinearMap ๐•œ E F) => p x

    Alias of ContinuousMultilinearMap.continuous_eval_const.

    theorem ContinuousMultilinearMap.continuous_coe_fun {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] :
    Continuous DFunLike.coe
    instance ContinuousMultilinearMap.instT2Space {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] [T2Space F] :
    Equations
    • โ‹ฏ = โ‹ฏ
    def ContinuousMultilinearMap.apply (๐•œ : Type u_1) {ฮน : Type u_2} (E : ฮน โ†’ Type u_3) (F : Type u_4) [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] [ContinuousConstSMul ๐•œ F] (m : (i : ฮน) โ†’ E i) :
    ContinuousMultilinearMap ๐•œ E F โ†’L[๐•œ] F

    The application of a multilinear map as a ContinuousLinearMap.

    Equations
    Instances For
      @[simp]
      theorem ContinuousMultilinearMap.apply_apply {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] [ContinuousConstSMul ๐•œ F] {m : (i : ฮน) โ†’ E i} {c : ContinuousMultilinearMap ๐•œ E F} :
      (ContinuousMultilinearMap.apply ๐•œ E F m) c = c m
      theorem ContinuousMultilinearMap.hasSum_eval {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] {ฮฑ : Type u_5} {p : ฮฑ โ†’ ContinuousMultilinearMap ๐•œ E F} {q : ContinuousMultilinearMap ๐•œ E F} (h : HasSum p q) (m : (i : ฮน) โ†’ E i) :
      HasSum (fun (a : ฮฑ) => (p a) m) (q m)
      theorem ContinuousMultilinearMap.tsum_eval {๐•œ : Type u_1} {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} {F : Type u_4} [NormedField ๐•œ] [(i : ฮน) โ†’ TopologicalSpace (E i)] [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] [T2Space F] {ฮฑ : Type u_5} {p : ฮฑ โ†’ ContinuousMultilinearMap ๐•œ E F} (hp : Summable p) (m : (i : ฮน) โ†’ E i) :
      (โˆ‘' (a : ฮฑ), p a) m = โˆ‘' (a : ฮฑ), (p a) m