Topology on continuous multilinear maps #
In this file we define TopologicalSpace
and UniformSpace
structures
on ContinuousMultilinearMap ๐ E F
,
where E i
is a family of vector spaces over ๐
with topologies
and F
is a topological vector space.
def
ContinuousMultilinearMap.toUniformOnFun
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
(f : ContinuousMultilinearMap ๐ E F)
:
UniformOnFun ((i : ฮน) โ E i) F {s : Set ((i : ฮน) โ E i) | Bornology.IsVonNBounded ๐ s}
An auxiliary definition used to define topology on ContinuousMultilinearMap ๐ E F
.
Equations
- f.toUniformOnFun = (UniformOnFun.ofFun {s : Set ((i : ฮน) โ E i) | Bornology.IsVonNBounded ๐ s}) โf
Instances For
@[simp]
theorem
ContinuousMultilinearMap.toUniformOnFun_toFun
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
(f : ContinuousMultilinearMap ๐ E F)
:
(UniformOnFun.toFun {s : Set ((i : ฮน) โ E i) | Bornology.IsVonNBounded ๐ s}) f.toUniformOnFun = โf
instance
ContinuousMultilinearMap.instTopologicalSpace
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
:
TopologicalSpace (ContinuousMultilinearMap ๐ E F)
Equations
- One or more equations did not get rendered due to their size.
instance
ContinuousMultilinearMap.instUniformSpace
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[UniformSpace F]
[UniformAddGroup F]
:
UniformSpace (ContinuousMultilinearMap ๐ E F)
Equations
- One or more equations did not get rendered due to their size.
theorem
ContinuousMultilinearMap.uniformEmbedding_toUniformOnFun
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[UniformSpace F]
[UniformAddGroup F]
:
UniformEmbedding ContinuousMultilinearMap.toUniformOnFun
theorem
ContinuousMultilinearMap.embedding_toUniformOnFun
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[UniformSpace F]
[UniformAddGroup F]
:
Embedding ContinuousMultilinearMap.toUniformOnFun
theorem
ContinuousMultilinearMap.uniformContinuous_coe_fun
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[UniformSpace F]
[UniformAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
:
UniformContinuous DFunLike.coe
theorem
ContinuousMultilinearMap.uniformContinuous_eval_const
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[UniformSpace F]
[UniformAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
(x : (i : ฮน) โ E i)
:
UniformContinuous fun (f : ContinuousMultilinearMap ๐ E F) => f x
instance
ContinuousMultilinearMap.instUniformAddGroup
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[UniformSpace F]
[UniformAddGroup F]
:
UniformAddGroup (ContinuousMultilinearMap ๐ E F)
Equations
- โฏ = โฏ
instance
ContinuousMultilinearMap.instUniformContinuousConstSMul
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[UniformSpace F]
[UniformAddGroup F]
{M : Type u_5}
[Monoid M]
[DistribMulAction M F]
[SMulCommClass ๐ M F]
[ContinuousConstSMul M F]
:
UniformContinuousConstSMul M (ContinuousMultilinearMap ๐ E F)
Equations
- โฏ = โฏ
instance
ContinuousMultilinearMap.instContinuousConstSMul
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
{M : Type u_5}
[Monoid M]
[DistribMulAction M F]
[SMulCommClass ๐ M F]
[ContinuousConstSMul M F]
:
ContinuousConstSMul M (ContinuousMultilinearMap ๐ E F)
Equations
- โฏ = โฏ
instance
ContinuousMultilinearMap.instContinuousSMul
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[ContinuousSMul ๐ F]
:
ContinuousSMul ๐ (ContinuousMultilinearMap ๐ E F)
Equations
- โฏ = โฏ
theorem
ContinuousMultilinearMap.hasBasis_nhds_zero_of_basis
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮนโ โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮนโ) โ TopologicalSpace (E i)]
[(i : ฮนโ) โ AddCommGroup (E i)]
[(i : ฮนโ) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
{ฮน : Type u_5}
{p : ฮน โ Prop}
{b : ฮน โ Set F}
(h : (nhds 0).HasBasis p b)
:
(nhds 0).HasBasis (fun (Si : Set ((i : ฮนโ) โ E i) ร ฮน) => Bornology.IsVonNBounded ๐ Si.1 โง p Si.2)
fun (Si : Set ((i : ฮนโ) โ E i) ร ฮน) => {f : ContinuousMultilinearMap ๐ E F | Set.MapsTo (โf) Si.1 (b Si.2)}
theorem
ContinuousMultilinearMap.hasBasis_nhds_zero
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
:
(nhds 0).HasBasis (fun (SV : Set ((i : ฮน) โ E i) ร Set F) => Bornology.IsVonNBounded ๐ SV.1 โง SV.2 โ nhds 0)
fun (SV : Set ((i : ฮน) โ E i) ร Set F) => {f : ContinuousMultilinearMap ๐ E F | Set.MapsTo (โf) SV.1 SV.2}
theorem
ContinuousMultilinearMap.continuous_eval_const
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
(x : (i : ฮน) โ E i)
:
Continuous fun (p : ContinuousMultilinearMap ๐ E F) => p x
@[deprecated ContinuousMultilinearMap.continuous_eval_const]
theorem
ContinuousMultilinearMap.continuous_eval_left
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
(x : (i : ฮน) โ E i)
:
Continuous fun (p : ContinuousMultilinearMap ๐ E F) => p x
theorem
ContinuousMultilinearMap.continuous_coe_fun
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
:
Continuous DFunLike.coe
instance
ContinuousMultilinearMap.instT2Space
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
[T2Space F]
:
T2Space (ContinuousMultilinearMap ๐ E F)
Equations
- โฏ = โฏ
def
ContinuousMultilinearMap.apply
(๐ : Type u_1)
{ฮน : Type u_2}
(E : ฮน โ Type u_3)
(F : Type u_4)
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
[ContinuousConstSMul ๐ F]
(m : (i : ฮน) โ E i)
:
ContinuousMultilinearMap ๐ E F โL[๐] F
The application of a multilinear map as a ContinuousLinearMap
.
Equations
- ContinuousMultilinearMap.apply ๐ E F m = { toFun := fun (c : ContinuousMultilinearMap ๐ E F) => c m, map_add' := โฏ, map_smul' := โฏ, cont := โฏ }
Instances For
@[simp]
theorem
ContinuousMultilinearMap.apply_apply
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
[ContinuousConstSMul ๐ F]
{m : (i : ฮน) โ E i}
{c : ContinuousMultilinearMap ๐ E F}
:
(ContinuousMultilinearMap.apply ๐ E F m) c = c m
theorem
ContinuousMultilinearMap.hasSum_eval
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
{ฮฑ : Type u_5}
{p : ฮฑ โ ContinuousMultilinearMap ๐ E F}
{q : ContinuousMultilinearMap ๐ E F}
(h : HasSum p q)
(m : (i : ฮน) โ E i)
:
HasSum (fun (a : ฮฑ) => (p a) m) (q m)
theorem
ContinuousMultilinearMap.tsum_eval
{๐ : Type u_1}
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
{F : Type u_4}
[NormedField ๐]
[(i : ฮน) โ TopologicalSpace (E i)]
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
[TopologicalAddGroup F]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
[T2Space F]
{ฮฑ : Type u_5}
{p : ฮฑ โ ContinuousMultilinearMap ๐ E F}
(hp : Summable p)
(m : (i : ฮน) โ E i)
:
(โ' (a : ฮฑ), p a) m = โ' (a : ฮฑ), (p a) m