Documentation

Mathlib.Topology.Algebra.FilterBasis

Group and ring filter bases #

A GroupFilterBasis is a FilterBasis on a group with some properties relating the basis to the group structure. The main theorem is that a GroupFilterBasis on a group gives a topology on the group which makes it into a topological group with neighborhoods of the neutral element generated by the given basis.

Main definitions and results #

Given a group G and a ring R:

References #

class GroupFilterBasis (G : Type u) [Group G] extends FilterBasis :

A GroupFilterBasis on a group is a FilterBasis satisfying some additional axioms. Example : if G is a topological group then the neighbourhoods of the identity are a GroupFilterBasis. Conversely given a GroupFilterBasis one can define a topology compatible with the group structure on G.

  • sets : Set (Set G)
  • nonempty : GroupFilterBasis.toFilterBasis.sets.Nonempty
  • inter_sets : ∀ {x y : Set G}, x GroupFilterBasis.toFilterBasis.setsy GroupFilterBasis.toFilterBasis.setszGroupFilterBasis.toFilterBasis.sets, z x y
  • one' : ∀ {U : Set G}, U GroupFilterBasis.toFilterBasis.sets1 U
  • mul' : ∀ {U : Set G}, U GroupFilterBasis.toFilterBasis.setsVGroupFilterBasis.toFilterBasis.sets, V * V U
  • inv' : ∀ {U : Set G}, U GroupFilterBasis.toFilterBasis.setsVGroupFilterBasis.toFilterBasis.sets, V (fun (x : G) => x⁻¹) ⁻¹' U
  • conj' : ∀ (x₀ : G) {U : Set G}, U GroupFilterBasis.toFilterBasis.setsVGroupFilterBasis.toFilterBasis.sets, V (fun (x : G) => x₀ * x * x₀⁻¹) ⁻¹' U
Instances
    theorem GroupFilterBasis.one' {G : Type u} [Group G] [self : GroupFilterBasis G] {U : Set G} :
    U GroupFilterBasis.toFilterBasis.sets1 U
    theorem GroupFilterBasis.mul' {G : Type u} [Group G] [self : GroupFilterBasis G] {U : Set G} :
    U GroupFilterBasis.toFilterBasis.setsVGroupFilterBasis.toFilterBasis.sets, V * V U
    theorem GroupFilterBasis.inv' {G : Type u} [Group G] [self : GroupFilterBasis G] {U : Set G} :
    U GroupFilterBasis.toFilterBasis.setsVGroupFilterBasis.toFilterBasis.sets, V (fun (x : G) => x⁻¹) ⁻¹' U
    theorem GroupFilterBasis.conj' {G : Type u} [Group G] [self : GroupFilterBasis G] (x₀ : G) {U : Set G} :
    U GroupFilterBasis.toFilterBasis.setsVGroupFilterBasis.toFilterBasis.sets, V (fun (x : G) => x₀ * x * x₀⁻¹) ⁻¹' U
    class AddGroupFilterBasis (A : Type u) [AddGroup A] extends FilterBasis :

    An AddGroupFilterBasis on an additive group is a FilterBasis satisfying some additional axioms. Example : if G is a topological group then the neighbourhoods of the identity are an AddGroupFilterBasis. Conversely given an AddGroupFilterBasis one can define a topology compatible with the group structure on G.

    • sets : Set (Set A)
    • nonempty : AddGroupFilterBasis.toFilterBasis.sets.Nonempty
    • inter_sets : ∀ {x y : Set A}, x AddGroupFilterBasis.toFilterBasis.setsy AddGroupFilterBasis.toFilterBasis.setszAddGroupFilterBasis.toFilterBasis.sets, z x y
    • zero' : ∀ {U : Set A}, U AddGroupFilterBasis.toFilterBasis.sets0 U
    • add' : ∀ {U : Set A}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V + V U
    • neg' : ∀ {U : Set A}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : A) => -x) ⁻¹' U
    • conj' : ∀ (x₀ : A) {U : Set A}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : A) => x₀ + x + -x₀) ⁻¹' U
    Instances
      theorem AddGroupFilterBasis.zero' {A : Type u} [AddGroup A] [self : AddGroupFilterBasis A] {U : Set A} :
      U AddGroupFilterBasis.toFilterBasis.sets0 U
      theorem AddGroupFilterBasis.add' {A : Type u} [AddGroup A] [self : AddGroupFilterBasis A] {U : Set A} :
      U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V + V U
      theorem AddGroupFilterBasis.neg' {A : Type u} [AddGroup A] [self : AddGroupFilterBasis A] {U : Set A} :
      U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : A) => -x) ⁻¹' U
      theorem AddGroupFilterBasis.conj' {A : Type u} [AddGroup A] [self : AddGroupFilterBasis A] (x₀ : A) {U : Set A} :
      U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : A) => x₀ + x + -x₀) ⁻¹' U
      theorem addGroupFilterBasisOfComm.proof_1 {G : Type u_1} [AddCommGroup G] (sets : Set (Set G)) (nonempty : sets.Nonempty) (inter_sets : ∀ (x y : Set G), x setsy setszsets, z x y) (x : G) (U : Set G) (U_in : U { sets := sets, nonempty := nonempty, inter_sets := }.sets) :
      V{ sets := sets, nonempty := nonempty, inter_sets := }.sets, V (fun (x_1 : G) => x + x_1 + -x) ⁻¹' U
      def addGroupFilterBasisOfComm {G : Type u_1} [AddCommGroup G] (sets : Set (Set G)) (nonempty : sets.Nonempty) (inter_sets : ∀ (x y : Set G), x setsy setszsets, z x y) (one : Usets, 0 U) (mul : Usets, Vsets, V + V U) (inv : Usets, Vsets, V (fun (x : G) => -x) ⁻¹' U) :

      AddGroupFilterBasis constructor in the additive commutative group case.

      Equations
      • addGroupFilterBasisOfComm sets nonempty inter_sets one mul inv = { sets := sets, nonempty := nonempty, inter_sets := , zero' := , add' := , neg' := , conj' := }
      def groupFilterBasisOfComm {G : Type u_1} [CommGroup G] (sets : Set (Set G)) (nonempty : sets.Nonempty) (inter_sets : ∀ (x y : Set G), x setsy setszsets, z x y) (one : Usets, 1 U) (mul : Usets, Vsets, V * V U) (inv : Usets, Vsets, V (fun (x : G) => x⁻¹) ⁻¹' U) :

      GroupFilterBasis constructor in the commutative group case.

      Equations
      • groupFilterBasisOfComm sets nonempty inter_sets one mul inv = { sets := sets, nonempty := nonempty, inter_sets := , one' := , mul' := , inv' := , conj' := }
      Equations
      • AddGroupFilterBasis.instMembershipSet = { mem := fun (s : Set G) (f : AddGroupFilterBasis G) => s AddGroupFilterBasis.toFilterBasis.sets }
      Equations
      • GroupFilterBasis.instMembershipSet = { mem := fun (s : Set G) (f : GroupFilterBasis G) => s GroupFilterBasis.toFilterBasis.sets }
      theorem AddGroupFilterBasis.zero {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
      U B0 U
      theorem GroupFilterBasis.one {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
      U B1 U
      theorem AddGroupFilterBasis.add {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
      U BVB, V + V U
      theorem GroupFilterBasis.mul {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
      U BVB, V * V U
      theorem AddGroupFilterBasis.neg {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
      U BVB, V (fun (x : G) => -x) ⁻¹' U
      theorem GroupFilterBasis.inv {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
      U BVB, V (fun (x : G) => x⁻¹) ⁻¹' U
      theorem AddGroupFilterBasis.conj {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} (x₀ : G) {U : Set G} :
      U BVB, V (fun (x : G) => x₀ + x + -x₀) ⁻¹' U
      theorem GroupFilterBasis.conj {G : Type u} [Group G] {B : GroupFilterBasis G} (x₀ : G) {U : Set G} :
      U BVB, V (fun (x : G) => x₀ * x * x₀⁻¹) ⁻¹' U
      theorem AddGroupFilterBasis.instInhabited.proof_3 {G : Type u_1} [AddGroup G] (a : Set G) :
      a {{0}}0 a
      theorem AddGroupFilterBasis.instInhabited.proof_2 {G : Type u_1} [AddGroup G] (a : Set G) (a : Set G) :
      a✝ {{0}}a {{0}}x{{0}}, x a✝ a
      theorem AddGroupFilterBasis.instInhabited.proof_1 {G : Type u_1} [AddGroup G] :
      {{0}}.Nonempty

      The trivial additive group filter basis consists of {0} only. The associated topology is discrete.

      Equations
      • AddGroupFilterBasis.instInhabited = { default := { sets := {{0}}, nonempty := , inter_sets := , zero' := , add' := , neg' := , conj' := } }
      theorem AddGroupFilterBasis.instInhabited.proof_4 {G : Type u_1} [AddGroup G] (a : Set G) :
      a {{0}}x{{0}}, x + x a
      theorem AddGroupFilterBasis.instInhabited.proof_6 {G : Type u_1} [AddGroup G] (a : G) (a : Set G) :
      a {{0}}x{{0}}, x (fun (x : G) => a✝ + x + -a✝) ⁻¹' a
      theorem AddGroupFilterBasis.instInhabited.proof_5 {G : Type u_1} [AddGroup G] (a : Set G) :
      a {{0}}x{{0}}, x -a

      The trivial group filter basis consists of {1} only. The associated topology is discrete.

      Equations
      • GroupFilterBasis.instInhabited = { default := { sets := {{1}}, nonempty := , inter_sets := , one' := , mul' := , inv' := , conj' := } }
      theorem AddGroupFilterBasis.subset_add_self {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {U : Set G} (h : U B) :
      U U + U
      theorem GroupFilterBasis.subset_mul_self {G : Type u} [Group G] (B : GroupFilterBasis G) {U : Set G} (h : U B) :
      U U * U

      The neighborhood function of an AddGroupFilterBasis.

      Equations
      • B.N x = Filter.map (fun (y : G) => x + y) AddGroupFilterBasis.toFilterBasis.filter
      def GroupFilterBasis.N {G : Type u} [Group G] (B : GroupFilterBasis G) :
      GFilter G

      The neighborhood function of a GroupFilterBasis.

      Equations
      • B.N x = Filter.map (fun (y : G) => x * y) GroupFilterBasis.toFilterBasis.filter
      @[simp]
      theorem AddGroupFilterBasis.N_zero {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) :
      B.N 0 = AddGroupFilterBasis.toFilterBasis.filter
      @[simp]
      theorem GroupFilterBasis.N_one {G : Type u} [Group G] (B : GroupFilterBasis G) :
      B.N 1 = GroupFilterBasis.toFilterBasis.filter
      theorem AddGroupFilterBasis.hasBasis {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) (x : G) :
      (B.N x).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x + y) '' V
      theorem GroupFilterBasis.hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) (x : G) :
      (B.N x).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x * y) '' V

      The topological space structure coming from an additive group filter basis.

      Equations

      The topological space structure coming from a group filter basis.

      Equations
      theorem AddGroupFilterBasis.nhds_eq {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {x₀ : G} :
      nhds x₀ = B.N x₀
      theorem GroupFilterBasis.nhds_eq {G : Type u} [Group G] (B : GroupFilterBasis G) {x₀ : G} :
      nhds x₀ = B.N x₀
      theorem AddGroupFilterBasis.nhds_zero_eq {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) :
      nhds 0 = AddGroupFilterBasis.toFilterBasis.filter
      theorem GroupFilterBasis.nhds_one_eq {G : Type u} [Group G] (B : GroupFilterBasis G) :
      nhds 1 = GroupFilterBasis.toFilterBasis.filter
      theorem AddGroupFilterBasis.nhds_hasBasis {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) (x₀ : G) :
      (nhds x₀).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x₀ + y) '' V
      theorem GroupFilterBasis.nhds_hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) (x₀ : G) :
      (nhds x₀).HasBasis (fun (V : Set G) => V B) fun (V : Set G) => (fun (y : G) => x₀ * y) '' V
      theorem AddGroupFilterBasis.nhds_zero_hasBasis {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) :
      (nhds 0).HasBasis (fun (V : Set G) => V B) id
      theorem GroupFilterBasis.nhds_one_hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) :
      (nhds 1).HasBasis (fun (V : Set G) => V B) id
      theorem AddGroupFilterBasis.mem_nhds_zero {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {U : Set G} (hU : U B) :
      U nhds 0
      theorem GroupFilterBasis.mem_nhds_one {G : Type u} [Group G] (B : GroupFilterBasis G) {U : Set G} (hU : U B) :
      U nhds 1
      @[instance 100]

      If a group is endowed with a topological structure coming from a group filter basis then it's a topological group.

      Equations
      • =
      @[instance 100]

      If a group is endowed with a topological structure coming from a group filter basis then it's a topological group.

      Equations
      • =
      class RingFilterBasis (R : Type u) [Ring R] extends AddGroupFilterBasis :

      A RingFilterBasis on a ring is a FilterBasis satisfying some additional axioms. Example : if R is a topological ring then the neighbourhoods of the identity are a RingFilterBasis. Conversely given a RingFilterBasis on a ring R, one can define a topology on R which is compatible with the ring structure.

      • sets : Set (Set R)
      • nonempty : AddGroupFilterBasis.toFilterBasis.sets.Nonempty
      • inter_sets : ∀ {x y : Set R}, x AddGroupFilterBasis.toFilterBasis.setsy AddGroupFilterBasis.toFilterBasis.setszAddGroupFilterBasis.toFilterBasis.sets, z x y
      • zero' : ∀ {U : Set R}, U AddGroupFilterBasis.toFilterBasis.sets0 U
      • add' : ∀ {U : Set R}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V + V U
      • neg' : ∀ {U : Set R}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : R) => -x) ⁻¹' U
      • conj' : ∀ (x₀ : R) {U : Set R}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : R) => x₀ + x + -x₀) ⁻¹' U
      • mul' : ∀ {U : Set R}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V * V U
      • mul_left' : ∀ (x₀ : R) {U : Set R}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : R) => x₀ * x) ⁻¹' U
      • mul_right' : ∀ (x₀ : R) {U : Set R}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : R) => x * x₀) ⁻¹' U
      Instances
        theorem RingFilterBasis.mul' {R : Type u} [Ring R] [self : RingFilterBasis R] {U : Set R} :
        U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V * V U
        theorem RingFilterBasis.mul_left' {R : Type u} [Ring R] [self : RingFilterBasis R] (x₀ : R) {U : Set R} :
        U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : R) => x₀ * x) ⁻¹' U
        theorem RingFilterBasis.mul_right' {R : Type u} [Ring R] [self : RingFilterBasis R] (x₀ : R) {U : Set R} :
        U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : R) => x * x₀) ⁻¹' U
        Equations
        • RingFilterBasis.instMembershipSet = { mem := fun (s : Set R) (B : RingFilterBasis R) => s AddGroupFilterBasis.toFilterBasis.sets }
        theorem RingFilterBasis.mul {R : Type u} [Ring R] (B : RingFilterBasis R) {U : Set R} (hU : U B) :
        VB, V * V U
        theorem RingFilterBasis.mul_left {R : Type u} [Ring R] (B : RingFilterBasis R) (x₀ : R) {U : Set R} (hU : U B) :
        VB, V (fun (x : R) => x₀ * x) ⁻¹' U
        theorem RingFilterBasis.mul_right {R : Type u} [Ring R] (B : RingFilterBasis R) (x₀ : R) {U : Set R} (hU : U B) :
        VB, V (fun (x : R) => x * x₀) ⁻¹' U

        The topology associated to a ring filter basis. It has the given basis as a basis of neighborhoods of zero.

        Equations
        • B.topology = RingFilterBasis.toAddGroupFilterBasis.topology
        @[instance 100]

        If a ring is endowed with a topological structure coming from a ring filter basis then it's a topological ring.

        Equations
        • =
        structure ModuleFilterBasis (R : Type u_1) (M : Type u_2) [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] extends AddGroupFilterBasis :
        Type u_2

        A ModuleFilterBasis on a module is a FilterBasis satisfying some additional axioms. Example : if M is a topological module then the neighbourhoods of zero are a ModuleFilterBasis. Conversely given a ModuleFilterBasis one can define a topology compatible with the module structure on M.

        • sets : Set (Set M)
        • nonempty : AddGroupFilterBasis.toFilterBasis.sets.Nonempty
        • inter_sets : ∀ {x y : Set M}, x AddGroupFilterBasis.toFilterBasis.setsy AddGroupFilterBasis.toFilterBasis.setszAddGroupFilterBasis.toFilterBasis.sets, z x y
        • zero' : ∀ {U : Set M}, U AddGroupFilterBasis.toFilterBasis.sets0 U
        • add' : ∀ {U : Set M}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V + V U
        • neg' : ∀ {U : Set M}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : M) => -x) ⁻¹' U
        • conj' : ∀ (x₀ : M) {U : Set M}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : M) => x₀ + x + -x₀) ⁻¹' U
        • smul' : ∀ {U : Set M}, U AddGroupFilterBasis.toFilterBasis.setsVnhds 0, WAddGroupFilterBasis.toFilterBasis.sets, V W U
        • smul_left' : ∀ (x₀ : R) {U : Set M}, U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : M) => x₀ x) ⁻¹' U
        • smul_right' : ∀ (m₀ : M) {U : Set M}, U AddGroupFilterBasis.toFilterBasis.sets∀ᶠ (x : R) in nhds 0, x m₀ U
        Instances For
        theorem ModuleFilterBasis.smul' {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (self : ModuleFilterBasis R M) {U : Set M} :
        U AddGroupFilterBasis.toFilterBasis.setsVnhds 0, WAddGroupFilterBasis.toFilterBasis.sets, V W U
        theorem ModuleFilterBasis.smul_left' {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (self : ModuleFilterBasis R M) (x₀ : R) {U : Set M} :
        U AddGroupFilterBasis.toFilterBasis.setsVAddGroupFilterBasis.toFilterBasis.sets, V (fun (x : M) => x₀ x) ⁻¹' U
        theorem ModuleFilterBasis.smul_right' {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (self : ModuleFilterBasis R M) (m₀ : M) {U : Set M} :
        U AddGroupFilterBasis.toFilterBasis.sets∀ᶠ (x : R) in nhds 0, x m₀ U
        Equations
        • ModuleFilterBasis.GroupFilterBasis.hasMem = { mem := fun (s : Set M) (B : ModuleFilterBasis R M) => s AddGroupFilterBasis.toFilterBasis.sets }
        theorem ModuleFilterBasis.smul {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) {U : Set M} (hU : U B) :
        Vnhds 0, WB, V W U
        theorem ModuleFilterBasis.smul_left {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) (x₀ : R) {U : Set M} (hU : U B) :
        VB, V (fun (x : M) => x₀ x) ⁻¹' U
        theorem ModuleFilterBasis.smul_right {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) (m₀ : M) {U : Set M} (hU : U B) :
        ∀ᶠ (x : R) in nhds 0, x m₀ U

        If R is discrete then the trivial additive group filter basis on any R-module is a module filter basis.

        Equations
        • One or more equations did not get rendered due to their size.

        The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero.

        Equations
        • B.topology = B.topology
        def ModuleFilterBasis.topology' {R : Type u_3} {M : Type u_4} [CommRing R] :
        {x : TopologicalSpace R} → [inst : AddCommGroup M] → [inst_1 : Module R M] → ModuleFilterBasis R MTopologicalSpace M

        The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero. This version gets the ring topology by unification instead of type class inference.

        Equations
        • B.topology' = B.topology
        theorem ContinuousSMul.of_basis_zero {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] {ι : Type u_3} [TopologicalRing R] [TopologicalSpace M] [TopologicalAddGroup M] {p : ιProp} {b : ιSet M} (h : (nhds 0).HasBasis p b) (hsmul : ∀ {i : ι}, p iVnhds 0, ∃ (j : ι), p j V b j b i) (hsmul_left : ∀ (x₀ : R) {i : ι}, p i∃ (j : ι), p j Set.MapsTo (fun (x : M) => x₀ x) (b j) (b i)) (hsmul_right : ∀ (m₀ : M) {i : ι}, p i∀ᶠ (x : R) in nhds 0, x m₀ b i) :

        A topological add group with a basis of 𝓝 0 satisfying the axioms of ModuleFilterBasis is a topological module.

        This lemma is mathematically useless because one could obtain such a result by applying ModuleFilterBasis.continuousSMul and use the fact that group topologies are characterized by their neighborhoods of 0 to obtain the ContinuousSMul on the pre-existing topology.

        But it turns out it's just easier to get it as a byproduct of the proof, so this is just a free quality-of-life improvement.

        @[instance 100]

        If a module is endowed with a topological structure coming from a module filter basis then it's a topological module.

        Equations
        • =
        def ModuleFilterBasis.ofBases {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] (BR : RingFilterBasis R) (BM : AddGroupFilterBasis M) (smul : ∀ {U : Set M}, U BMVBR, WBM, V W U) (smul_left : ∀ (x₀ : R) {U : Set M}, U BMVBM, V (fun (x : M) => x₀ x) ⁻¹' U) (smul_right : ∀ (m₀ : M) {U : Set M}, U BMVBR, V (fun (x : R) => x m₀) ⁻¹' U) :

        Build a module filter basis from compatible ring and additive group filter bases.

        Equations
        • ModuleFilterBasis.ofBases BR BM smul smul_left smul_right = let x := BR.topology; { toAddGroupFilterBasis := BM, smul' := , smul_left' := smul_left, smul_right' := }