Nilpotent elements #
This file develops the basic theory of nilpotent elements. In particular it shows that the nilpotent elements are closed under many operations.
For the definition of nilradical, see Mathlib.RingTheory.Nilpotent.Lemmas.
Main definitions #
@[simp]
theorem
IsNilpotent.smul
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
[MulActionWithZero R S]
[SMulCommClass R S S]
[IsScalarTower R S S]
{a : S}
(ha : IsNilpotent a)
(t : R)
:
IsNilpotent (t • a)
theorem
IsNilpotent.isUnit_add_left_of_commute
{R : Type u_1}
[Ring R]
{r : R}
{u : R}
(hnil : IsNilpotent r)
(hu : IsUnit u)
(h_comm : Commute r u)
:
theorem
IsNilpotent.isUnit_add_right_of_commute
{R : Type u_1}
[Ring R]
{r : R}
{u : R}
(hnil : IsNilpotent r)
(hu : IsUnit u)
(h_comm : Commute r u)
:
theorem
IsRadical.of_dvd
{R : Type u_1}
[CancelCommMonoidWithZero R]
{x : R}
{y : R}
(hy : IsRadical y)
(h0 : y ≠ 0)
(hxy : x ∣ y)
:
theorem
Commute.isNilpotent_add
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(hx : IsNilpotent x)
(hy : IsNilpotent y)
:
IsNilpotent (x + y)
theorem
Commute.isNilpotent_sum
{R : Type u_1}
[Semiring R]
{ι : Type u_3}
{s : Finset ι}
{f : ι → R}
(hnp : ∀ i ∈ s, IsNilpotent (f i))
(h_comm : ∀ (i j : ι), i ∈ s → j ∈ s → Commute (f i) (f j))
:
IsNilpotent (∑ i ∈ s, f i)
theorem
Commute.isNilpotent_mul_left_iff
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(hy : y ∈ nonZeroDivisorsLeft R)
:
IsNilpotent (x * y) ↔ IsNilpotent x
theorem
Commute.isNilpotent_mul_right_iff
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(hx : x ∈ nonZeroDivisorsRight R)
:
IsNilpotent (x * y) ↔ IsNilpotent y
theorem
Commute.isNilpotent_sub
{R : Type u_1}
{x : R}
{y : R}
[Ring R]
(h_comm : Commute x y)
(hx : IsNilpotent x)
(hy : IsNilpotent y)
:
IsNilpotent (x - y)
theorem
isNilpotent_sum
{R : Type u_1}
[CommSemiring R]
{ι : Type u_3}
{s : Finset ι}
{f : ι → R}
(hnp : ∀ i ∈ s, IsNilpotent (f i))
:
IsNilpotent (∑ i ∈ s, f i)
theorem
NoZeroSMulDivisors.isReduced
(R : Type u_3)
(M : Type u_4)
[MonoidWithZero R]
[Zero M]
[MulActionWithZero R M]
[Nontrivial M]
[NoZeroSMulDivisors R M]
: