Documentation

Mathlib.RingTheory.Ideal.IsPrimary

Primary ideals #

A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.

Main definitions #

def Ideal.IsPrimary {R : Type u_1} [CommSemiring R] (I : Ideal R) :

A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.

Equations
Instances For
    theorem Ideal.IsPrime.isPrimary {R : Type u_1} [CommSemiring R] {I : Ideal R} (hi : I.IsPrime) :
    I.IsPrimary
    theorem Ideal.isPrime_radical {R : Type u_1} [CommSemiring R] {I : Ideal R} (hi : I.IsPrimary) :
    I.radical.IsPrime
    theorem Ideal.isPrimary_inf {R : Type u_1} [CommSemiring R] {I : Ideal R} {J : Ideal R} (hi : I.IsPrimary) (hj : J.IsPrimary) (hij : I.radical = J.radical) :
    (I J).IsPrimary