The monotone sequence of partial supremums of a sequence #
We define partialSups : (ℕ → α) → ℕ →o α
inductively. For f : ℕ → α
, partialSups f
is
the sequence f 0
, f 0 ⊔ f 1
, f 0 ⊔ f 1 ⊔ f 2
, ... The point of this definition is that
- it doesn't need a
⨆
, as opposed to⨆ (i ≤ n), f i
(which also means the wrong thing onConditionallyCompleteLattice
s). - it doesn't need a
⊥
, as opposed to(Finset.range (n + 1)).sup f
. - it avoids needing to prove that
Finset.range (n + 1)
is nonempty to useFinset.sup'
.
Equivalence with those definitions is shown by partialSups_eq_biSup
, partialSups_eq_sup_range
,
and partialSups_eq_sup'_range
respectively.
Notes #
One might dispute whether this sequence should start at f 0
or ⊥
. We choose the former because :
- Starting at
⊥
requires... having a bottom element. fun f n ↦ (Finset.range n).sup f
is already effectively the sequence starting at⊥
.- If we started at
⊥
we wouldn't have the Galois insertion. SeepartialSups.gi
.
TODO #
One could generalize partialSups
to any locally finite bot preorder domain, in place of ℕ
.
Necessary for the TODO in the module docstring of Order.disjointed
.
The monotone sequence whose value at n
is the supremum of the f m
where m ≤ n
.
Equations
Instances For
@[simp]
@[simp]
theorem
partialSups_succ
{α : Type u_1}
[SemilatticeSup α]
(f : ℕ → α)
(n : ℕ)
:
(partialSups f) (n + 1) = (partialSups f) n ⊔ f (n + 1)
theorem
partialSups_iff_forall
{α : Type u_1}
[SemilatticeSup α]
{f : ℕ → α}
(p : α → Prop)
(hp : ∀ {a b : α}, p (a ⊔ b) ↔ p a ∧ p b)
{n : ℕ}
:
p ((partialSups f) n) ↔ ∀ k ≤ n, p (f k)
@[simp]
theorem
partialSups_le_iff
{α : Type u_1}
[SemilatticeSup α]
{f : ℕ → α}
{n : ℕ}
{a : α}
:
(partialSups f) n ≤ a ↔ ∀ k ≤ n, f k ≤ a
theorem
le_partialSups_of_le
{α : Type u_1}
[SemilatticeSup α]
(f : ℕ → α)
{m : ℕ}
{n : ℕ}
(h : m ≤ n)
:
f m ≤ (partialSups f) n
theorem
partialSups_le
{α : Type u_1}
[SemilatticeSup α]
(f : ℕ → α)
(n : ℕ)
(a : α)
(w : ∀ m ≤ n, f m ≤ a)
:
(partialSups f) n ≤ a
@[simp]
theorem
upperBounds_range_partialSups
{α : Type u_1}
[SemilatticeSup α]
(f : ℕ → α)
:
upperBounds (Set.range ⇑(partialSups f)) = upperBounds (Set.range f)
@[simp]
theorem
Monotone.partialSups_eq
{α : Type u_1}
[SemilatticeSup α]
{f : ℕ → α}
(hf : Monotone f)
:
⇑(partialSups f) = f
partialSups
forms a Galois insertion with the coercion from monotone functions to functions.
Equations
- partialSups.gi = { choice := fun (f : ℕ → α) (h : ⇑(partialSups f) ≤ f) => { toFun := f, monotone' := ⋯ }, gc := ⋯, le_l_u := ⋯, choice_eq := ⋯ }
Instances For
theorem
partialSups_eq_sup'_range
{α : Type u_1}
[SemilatticeSup α]
(f : ℕ → α)
(n : ℕ)
:
(partialSups f) n = (Finset.range (n + 1)).sup' ⋯ f
theorem
partialSups_apply
{ι : Type u_2}
{π : ι → Type u_3}
[(i : ι) → SemilatticeSup (π i)]
(f : ℕ → (i : ι) → π i)
(n : ℕ)
(i : ι)
:
(partialSups f) n i = (partialSups fun (x : ℕ) => f x i) n
theorem
partialSups_eq_sup_range
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
(f : ℕ → α)
(n : ℕ)
:
(partialSups f) n = (Finset.range (n + 1)).sup f
@[simp]
theorem
disjoint_partialSups_left
{α : Type u_1}
[DistribLattice α]
[OrderBot α]
{f : ℕ → α}
{n : ℕ}
{x : α}
:
Disjoint ((partialSups f) n) x ↔ ∀ k ≤ n, Disjoint (f k) x
@[simp]
theorem
disjoint_partialSups_right
{α : Type u_1}
[DistribLattice α]
[OrderBot α]
{f : ℕ → α}
{n : ℕ}
{x : α}
:
Disjoint x ((partialSups f) n) ↔ ∀ k ≤ n, Disjoint x (f k)
theorem
partialSups_disjoint_of_disjoint
{α : Type u_1}
[DistribLattice α]
[OrderBot α]
(f : ℕ → α)
(h : Pairwise (Disjoint on f))
{m : ℕ}
{n : ℕ}
(hmn : m < n)
:
Disjoint ((partialSups f) m) (f n)
theorem
partialSups_eq_ciSup_Iic
{α : Type u_1}
[ConditionallyCompleteLattice α]
(f : ℕ → α)
(n : ℕ)
:
(partialSups f) n = ⨆ (i : ↑(Set.Iic n)), f ↑i
@[simp]
theorem
ciSup_partialSups_eq
{α : Type u_1}
[ConditionallyCompleteLattice α]
{f : ℕ → α}
(h : BddAbove (Set.range f))
:
⨆ (n : ℕ), (partialSups f) n = ⨆ (n : ℕ), f n
theorem
partialSups_eq_biSup
{α : Type u_1}
[CompleteLattice α]
(f : ℕ → α)
(n : ℕ)
:
(partialSups f) n = ⨆ (i : ℕ), ⨆ (_ : i ≤ n), f i
theorem
iSup_partialSups_eq
{α : Type u_1}
[CompleteLattice α]
(f : ℕ → α)
:
⨆ (n : ℕ), (partialSups f) n = ⨆ (n : ℕ), f n
theorem
iSup_le_iSup_of_partialSups_le_partialSups
{α : Type u_1}
[CompleteLattice α]
{f : ℕ → α}
{g : ℕ → α}
(h : partialSups f ≤ partialSups g)
:
theorem
iSup_eq_iSup_of_partialSups_eq_partialSups
{α : Type u_1}
[CompleteLattice α]
{f : ℕ → α}
{g : ℕ → α}
(h : partialSups f = partialSups g)
: