The Caratheodory σ-algebra of an outer measure #
Given an outer measure m
, the Carathéodory-measurable sets are the sets s
such that
for all sets t
we have m t = m (t ∩ s) + m (t \ s)
. This forms a measurable space.
Main definitions and statements #
caratheodory
is the Carathéodory-measurable space of an outer measure.
References #
- https://en.wikipedia.org/wiki/Outer_measure
- https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s_criterion
Tags #
Carathéodory-measurable, Carathéodory's criterion
def
MeasureTheory.OuterMeasure.IsCaratheodory
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
(s : Set α)
:
A set s
is Carathéodory-measurable for an outer measure m
if for all sets t
we have
m t = m (t ∩ s) + m (t \ s)
.
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.isCaratheodory_empty
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
:
m.IsCaratheodory ∅
theorem
MeasureTheory.OuterMeasure.isCaratheodory_compl
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s₁ : Set α}
:
m.IsCaratheodory s₁ → m.IsCaratheodory s₁ᶜ
@[simp]
theorem
MeasureTheory.OuterMeasure.isCaratheodory_compl_iff
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s : Set α}
:
theorem
MeasureTheory.OuterMeasure.isCaratheodory_union
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s₁ : Set α}
{s₂ : Set α}
(h₁ : m.IsCaratheodory s₁)
(h₂ : m.IsCaratheodory s₂)
:
m.IsCaratheodory (s₁ ∪ s₂)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iUnion_lt
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s : ℕ → Set α}
{n : ℕ}
:
theorem
MeasureTheory.OuterMeasure.isCaratheodory_inter
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s₁ : Set α}
{s₂ : Set α}
(h₁ : m.IsCaratheodory s₁)
(h₂ : m.IsCaratheodory s₂)
:
m.IsCaratheodory (s₁ ∩ s₂)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iUnion_nat
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s : ℕ → Set α}
(h : ∀ (i : ℕ), m.IsCaratheodory (s i))
(hd : Pairwise (Disjoint on s))
:
m.IsCaratheodory (⋃ (i : ℕ), s i)
The Carathéodory-measurable sets for an outer measure m
form a Dynkin system.
Equations
- m.caratheodoryDynkin = { Has := m.IsCaratheodory, has_empty := ⋯, has_compl := ⋯, has_iUnion_nat := ⋯ }
Instances For
Given an outer measure μ
, the Carathéodory-measurable space is
defined such that s
is measurable if ∀t, μ t = μ (t ∩ s) + μ (t \ s)
.
Equations
- m.caratheodory = m.caratheodoryDynkin.toMeasurableSpace ⋯
Instances For
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iff
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s : Set α}
:
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iff_le
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s : Set α}
:
theorem
MeasureTheory.OuterMeasure.iUnion_eq_of_caratheodory
{α : Type u}
(m : MeasureTheory.OuterMeasure α)
{s : ℕ → Set α}
(h : ∀ (i : ℕ), MeasurableSet (s i))
(hd : Pairwise (Disjoint on s))
:
@[simp]
theorem
MeasureTheory.OuterMeasure.le_add_caratheodory
{α : Type u_1}
(m₁ : MeasureTheory.OuterMeasure α)
(m₂ : MeasureTheory.OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.le_sum_caratheodory
{α : Type u_1}
{ι : Type u_2}
(m : ι → MeasureTheory.OuterMeasure α)
:
⨅ (i : ι), (m i).caratheodory ≤ (MeasureTheory.OuterMeasure.sum m).caratheodory
theorem
MeasureTheory.OuterMeasure.le_smul_caratheodory
{α : Type u_1}
(a : ENNReal)
(m : MeasureTheory.OuterMeasure α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.dirac_caratheodory
{α : Type u_1}
(a : α)
:
(MeasureTheory.OuterMeasure.dirac a).caratheodory = ⊤