Strong rank condition for commutative rings #
We prove that any nontrivial commutative ring satisfies StrongRankCondition, meaning that
if there is an injective linear map (Fin n → R) →ₗ[R] Fin m → R, then n ≤ m. This implies that
any commutative ring satisfies InvariantBasisNumber: the rank of a finitely generated free
module is well defined.
Main result #
commRing_strongRankCondition R:Rhas theStrongRankCondition.
The commRing_strongRankCondition comes from CommRing.orzechProperty, proved in
Mathlib/RingTheory/FiniteType.lean, which states that any commutative ring satisfies
the OrzechProperty, that is, for any finitely generated
R-module M, any surjective homomorphism f : N → M from a submodule N of M to M
is injective.
References #
- [Orzech, Morris. Onto endomorphisms are isomorphisms][orzech1971]
- [Djoković, D. Ž. Epimorphisms of modules which must be isomorphisms][djokovic1973]
- [Ribenboim, Paulo. Épimorphismes de modules qui sont nécessairement des isomorphismes][ribenboim1971]
@[instance 100]
Any nontrivial commutative ring satisfies the StrongRankCondition.
Equations
- ⋯ = ⋯