Equations
- instReprOrdering_mathlib = { reprPrec := reprOrdering✝ }
@[inline]
Combine two Ordering
s lexicographically.
Equations
- x✝.orElse x = match x✝, x with | Ordering.lt, x => Ordering.lt | Ordering.eq, o => o | Ordering.gt, x => Ordering.gt
Instances For
The relation corresponding to each Ordering
constructor (e.g. .lt.toProp a b
is a < b
).
Equations
- x.toRel = match (motive := Ordering → α → α → Prop) x with | Ordering.lt => fun (x x_1 : α) => x < x_1 | Ordering.eq => Eq | Ordering.gt => fun (x x_1 : α) => x > x_1
Instances For
Lift a decidable relation to an Ordering
,
assuming that incomparable terms are Ordering.eq
.
Equations
- cmpUsing lt a b = if lt a b then Ordering.lt else if lt b a then Ordering.gt else Ordering.eq