Documentation
Mathlib
.
Init
.
Data
.
Nat
.
Basic
Search
Google site search
return to top
source
Imports
Init
Mathlib.Init.ZeroOne
Mathlib.Util.CompileInductive
Mathlib.Init.Data.Nat.Notation
Imported by
Nat
.
add_one_pos
Nat
.
bit0_succ_eq
Nat
.
zero_lt_bit0
Nat
.
zero_lt_bit1
Nat
.
bit0_ne_zero
Nat
.
bit1_ne_zero
source
theorem
Nat
.
add_one_pos
(n :
ℕ
)
:
0
<
n
+
1
source
theorem
Nat
.
bit0_succ_eq
(n :
ℕ
)
:
bit0
n
.succ
=
(
bit0
n
)
.succ
.succ
source
theorem
Nat
.
zero_lt_bit0
{n :
ℕ
}
:
n
≠
0
→
0
<
bit0
n
source
theorem
Nat
.
zero_lt_bit1
(n :
ℕ
)
:
0
<
bit1
n
source
theorem
Nat
.
bit0_ne_zero
{n :
ℕ
}
:
n
≠
0
→
bit0
n
≠
0
source
theorem
Nat
.
bit1_ne_zero
(n :
ℕ
)
:
bit1
n
≠
0