@[simp]
theorem
Equiv.optionCongr_swap
{α : Type u_1}
[DecidableEq α]
(x : α)
(y : α)
:
Equiv.optionCongr (Equiv.swap x y) = Equiv.swap (some x) (some y)
@[simp]
theorem
Equiv.optionCongr_sign
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(e : Equiv.Perm α)
:
Equiv.Perm.sign (Equiv.optionCongr e) = Equiv.Perm.sign e
@[simp]
theorem
map_equiv_removeNone
{α : Type u_1}
[DecidableEq α]
(σ : Equiv.Perm (Option α))
:
(Equiv.removeNone σ).optionCongr = Equiv.swap none (σ none) * σ
@[simp]
theorem
Equiv.Perm.decomposeOption_apply
{α : Type u_1}
[DecidableEq α]
(σ : Equiv.Perm (Option α))
:
Equiv.Perm.decomposeOption σ = (σ none, Equiv.removeNone σ)
@[simp]
theorem
Equiv.Perm.decomposeOption_symm_apply
{α : Type u_1}
[DecidableEq α]
(i : Option α × Equiv.Perm α)
:
Equiv.Perm.decomposeOption.symm i = Equiv.swap none i.1 * Equiv.optionCongr i.2
def
Equiv.Perm.decomposeOption
{α : Type u_1}
[DecidableEq α]
:
Equiv.Perm (Option α) ≃ Option α × Equiv.Perm α
Permutations of Option α
are equivalent to fixing an
Option α
and permuting the remaining with a Perm α
.
The fixed Option α
is swapped with none
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Equiv.Perm.decomposeOption_symm_of_none_apply
{α : Type u_1}
[DecidableEq α]
(e : Equiv.Perm α)
(i : Option α)
:
(Equiv.Perm.decomposeOption.symm (none, e)) i = Option.map (⇑e) i
theorem
Equiv.Perm.decomposeOption_symm_sign
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(e : Equiv.Perm α)
:
Equiv.Perm.sign (Equiv.Perm.decomposeOption.symm (none, e)) = Equiv.Perm.sign e
theorem
Finset.univ_perm_option
{α : Type u_1}
[DecidableEq α]
[Fintype α]
:
Finset.univ = Finset.map Equiv.Perm.decomposeOption.symm.toEmbedding Finset.univ
The set of all permutations of Option α
can be constructed by augmenting the set of
permutations of α
by each element of Option α
in turn.