Pointwise operations on sets of reals #
This file relates sInf (a • s)/sSup (a • s) with a • sInf s/a • sSup s for s : Set ℝ.
From these, it relates ⨅ i, a • f i / ⨆ i, a • f i with a • (⨅ i, f i) / a • (⨆ i, f i),
and provides lemmas about distributing * over ⨅ and ⨆.
TODO #
This is true more generally for conditionally complete linear order whose default value is 0. We
don't have those yet.
theorem
Real.sInf_smul_of_nonneg
{α : Type u_2}
[LinearOrderedField α]
[MulActionWithZero α ℝ]
[OrderedSMul α ℝ]
{a : α}
(ha : 0 ≤ a)
(s : Set ℝ)
:
theorem
Real.smul_iInf_of_nonneg
{ι : Sort u_1}
{α : Type u_2}
[LinearOrderedField α]
[MulActionWithZero α ℝ]
[OrderedSMul α ℝ]
{a : α}
(ha : 0 ≤ a)
(f : ι → ℝ)
:
theorem
Real.sSup_smul_of_nonneg
{α : Type u_2}
[LinearOrderedField α]
[MulActionWithZero α ℝ]
[OrderedSMul α ℝ]
{a : α}
(ha : 0 ≤ a)
(s : Set ℝ)
:
theorem
Real.smul_iSup_of_nonneg
{ι : Sort u_1}
{α : Type u_2}
[LinearOrderedField α]
[MulActionWithZero α ℝ]
[OrderedSMul α ℝ]
{a : α}
(ha : 0 ≤ a)
(f : ι → ℝ)
:
theorem
Real.smul_iSup_of_nonpos
{ι : Sort u_1}
{α : Type u_2}
[LinearOrderedField α]
[Module α ℝ]
[OrderedSMul α ℝ]
{a : α}
(ha : a ≤ 0)
(f : ι → ℝ)
:
theorem
Real.smul_iInf_of_nonpos
{ι : Sort u_1}
{α : Type u_2}
[LinearOrderedField α]
[Module α ℝ]
[OrderedSMul α ℝ]
{a : α}
(ha : a ≤ 0)
(f : ι → ℝ)
: