Real conjugate exponents #
This file defines conjugate exponents in ℝ
and ℝ≥0
. Real numbers p
and q
are conjugate if
they are both greater than 1
and satisfy p⁻¹ + q⁻¹ = 1
. This property shows up often in
analysis, especially when dealing with L^p
spaces.
Main declarations #
Real.IsConjExponent
: Predicate for two real numbers to be conjugate.Real.conjExponent
: Conjugate exponent of a real number.NNReal.IsConjExponent
: Predicate for two nonnegative real numbers to be conjugate.NNReal.conjExponent
: Conjugate exponent of a nonnegative real number.
TODO #
- Eradicate the
1 / p
spelling in lemmas. - Do we want an
ℝ≥0∞
version?
theorem
Real.IsConjExponent.conjExponent_eq
{p : ℝ}
{q : ℝ}
(h : p.IsConjExponent q)
:
p.conjExponent = q
theorem
Real.IsConjExponent.inv_add_inv_conj_ennreal
{p : ℝ}
{q : ℝ}
(h : p.IsConjExponent q)
:
(ENNReal.ofReal p)⁻¹ + (ENNReal.ofReal q)⁻¹ = 1
Two nonnegative real exponents p, q
are conjugate if they are > 1
and satisfy the equality
1/p + 1/q = 1
. This condition shows up in many theorems in analysis, notably related to L^p
norms.
- one_lt : 1 < p
Instances For
@[simp]
theorem
NNReal.isConjExponent_coe
{p : NNReal}
{q : NNReal}
:
(↑p).IsConjExponent ↑q ↔ p.IsConjExponent q
theorem
NNReal.IsConjExponent.coe
{p : NNReal}
{q : NNReal}
:
p.IsConjExponent q → (↑p).IsConjExponent ↑q
Alias of the reverse direction of NNReal.isConjExponent_coe
.
theorem
NNReal.IsConjExponent.conjExponent_eq
{p : NNReal}
{q : NNReal}
(h : p.IsConjExponent q)
:
p.conjExponent = q
theorem
NNReal.IsConjExponent.symm
{p : NNReal}
{q : NNReal}
(h : p.IsConjExponent q)
:
q.IsConjExponent p
theorem
NNReal.IsConjExponent.conjExponent
{p : NNReal}
(h : 1 < p)
:
p.IsConjExponent p.conjExponent
theorem
Real.IsConjExponent.toNNReal
{p : ℝ}
{q : ℝ}
(hpq : p.IsConjExponent q)
:
p.toNNReal.IsConjExponent q.toNNReal