Documentation

Mathlib.Data.PNat.Defs

The positive natural numbers #

This file contains the definitions, and basic results. Most algebraic facts are deferred to Data.PNat.Basic, as they need more imports.

def PNat :

ℕ+ is the type of positive natural numbers. It is defined as a subtype, and the VM representation of ℕ+ is the same as because the proof is not stored.

Equations
Instances For

    ℕ+ is the type of positive natural numbers. It is defined as a subtype, and the VM representation of ℕ+ is the same as because the proof is not stored.

    Equations
    Instances For
      instance instOnePNat :
      Equations
      def PNat.val :
      ℕ+

      The underlying natural number

      Equations
      Instances For
        Equations
        Equations
        Equations
        @[simp]
        theorem PNat.mk_coe (n : ) (h : 0 < n) :
        n, h = n
        def PNat.natPred (i : ℕ+) :

        Predecessor of a ℕ+, as a .

        Equations
        • i.natPred = i - 1
        Instances For
          @[simp]
          theorem PNat.natPred_eq_pred {n : } (h : 0 < n) :
          PNat.natPred n, h = n.pred
          def Nat.toPNat (n : ) (h : autoParam (0 < n) _auto✝) :

          Convert a natural number to a positive natural number. The positivity assumption is inferred by dec_trivial.

          Equations
          • n.toPNat h = n, h
          Instances For
            def Nat.succPNat (n : ) :

            Write a successor as an element of ℕ+.

            Equations
            • n.succPNat = n.succ,
            Instances For
              @[simp]
              theorem Nat.succPNat_coe (n : ) :
              n.succPNat = n.succ
              @[simp]
              theorem Nat.natPred_succPNat (n : ) :
              n.succPNat.natPred = n
              @[simp]
              theorem PNat.succPNat_natPred (n : ℕ+) :
              n.natPred.succPNat = n
              def Nat.toPNat' (n : ) :

              Convert a natural number to a PNat. n+1 is mapped to itself, and 0 becomes 1.

              Equations
              • n.toPNat' = n.pred.succPNat
              Instances For
                @[simp]
                @[simp]
                theorem Nat.toPNat'_coe (n : ) :
                n.toPNat' = if 0 < n then n else 1
                theorem PNat.mk_le_mk (n : ) (k : ) (hn : 0 < n) (hk : 0 < k) :
                n, hn k, hk n k

                We now define a long list of structures on ℕ+ induced by similar structures on ℕ. Most of these behave in a completely obvious way, but there are a few things to be said about subtraction, division and powers.

                theorem PNat.mk_lt_mk (n : ) (k : ) (hn : 0 < n) (hk : 0 < k) :
                n, hn < k, hk n < k
                @[simp]
                theorem PNat.coe_le_coe (n : ℕ+) (k : ℕ+) :
                n k n k
                @[simp]
                theorem PNat.coe_lt_coe (n : ℕ+) (k : ℕ+) :
                n < k n < k
                @[simp]
                theorem PNat.pos (n : ℕ+) :
                0 < n
                theorem PNat.eq {m : ℕ+} {n : ℕ+} :
                m = nm = n
                @[simp]
                theorem PNat.ne_zero (n : ℕ+) :
                n 0
                instance NeZero.pnat {a : ℕ+} :
                NeZero a
                Equations
                • =
                theorem PNat.toPNat'_coe {n : } :
                0 < nn.toPNat' = n
                @[simp]
                theorem PNat.coe_toPNat' (n : ℕ+) :
                (n).toPNat' = n
                @[simp]
                theorem PNat.one_le (n : ℕ+) :
                1 n
                @[simp]
                theorem PNat.not_lt_one (n : ℕ+) :
                ¬n < 1
                Equations
                @[simp]
                theorem PNat.mk_one {h : 0 < 1} :
                1, h = 1
                theorem PNat.one_coe :
                1 = 1
                @[simp]
                theorem PNat.coe_eq_one_iff {m : ℕ+} :
                m = 1 m = 1
                def PNat.strongInductionOn {p : ℕ+Sort u_1} (n : ℕ+) :
                ((k : ℕ+) → ((m : ℕ+) → m < kp m)p k)p n

                Strong induction on ℕ+.

                Equations
                • n.strongInductionOn x = x n fun (a : ℕ+) (x_1 : a < n) => a.strongInductionOn x
                Instances For
                  def PNat.modDivAux :
                  ℕ+ℕ+ ×

                  We define m % k and m / k in the same way as for except that when m = n * k we take m % k = k and m / k = n - 1. This ensures that m % k is always positive and m = (m % k) + k * (m / k) in all cases. Later we define a function div_exact which gives the usual m / k in the case where k divides m.

                  Equations
                  • x✝¹.modDivAux x✝ x = match x✝¹, x✝, x with | k, 0, q => (k, q.pred) | x, r.succ, q => (r + 1, , q)
                  Instances For
                    def PNat.modDiv (m : ℕ+) (k : ℕ+) :

                    mod_div m k = (m % k, m / k). We define m % k and m / k in the same way as for except that when m = n * k we take m % k = k and m / k = n - 1. This ensures that m % k is always positive and m = (m % k) + k * (m / k) in all cases. Later we define a function div_exact which gives the usual m / k in the case where k divides m.

                    Equations
                    • m.modDiv k = k.modDivAux (m % k) (m / k)
                    Instances For
                      def PNat.mod (m : ℕ+) (k : ℕ+) :

                      We define m % k in the same way as for except that when m = n * k we take m % k = k This ensures that m % k is always positive.

                      Equations
                      • m.mod k = (m.modDiv k).1
                      Instances For
                        def PNat.div (m : ℕ+) (k : ℕ+) :

                        We define m / k in the same way as for except that when m = n * k we take m / k = n - 1. This ensures that m = (m % k) + k * (m / k) in all cases. Later we define a function div_exact which gives the usual m / k in the case where k divides m.

                        Equations
                        • m.div k = (m.modDiv k).2
                        Instances For
                          theorem PNat.mod_coe (m : ℕ+) (k : ℕ+) :
                          (m.mod k) = if m % k = 0 then k else m % k
                          theorem PNat.div_coe (m : ℕ+) (k : ℕ+) :
                          m.div k = if m % k = 0 then (m / k).pred else m / k
                          def PNat.divExact (m : ℕ+) (k : ℕ+) :

                          If h : k | m, then k * (div_exact m k) = m. Note that this is not equal to m / k.

                          Equations
                          • m.divExact k = (m.div k).succ,
                          Instances For
                            instance Nat.canLiftPNat :
                            CanLift ℕ+ PNat.val fun (n : ) => 0 < n
                            Equations
                            instance Int.canLiftPNat :
                            CanLift ℕ+ (fun (x : ℕ+) => x) fun (x : ) => 0 < x
                            Equations