Lattice structure of lists #
This files prove basic properties about List.disjoint
, List.union
, List.inter
and
List.bagInter
, which are defined in core Lean and Data.List.Defs
.
l₁ ∪ l₂
is the list where all elements of l₁
have been inserted in l₂
in order. For example,
[0, 0, 1, 2, 2, 3] ∪ [4, 3, 3, 0] = [1, 2, 4, 3, 3, 0]
l₁ ∩ l₂
is the list of elements of l₁
in order which are in l₂
. For example,
[0, 0, 1, 2, 2, 3] ∪ [4, 3, 3, 0] = [0, 0, 3]
List.bagInter l₁ l₂
is the list of elements that are in both l₁
and l₂
,
counted with multiplicity and in the order they appear in l₁
.
As opposed to List.inter
, List.bagInter
copes well with multiplicity. For example,
bagInter [0, 1, 2, 3, 2, 1, 0] [1, 0, 1, 4, 3] = [0, 1, 3, 1]
Disjoint
#
theorem
List.Disjoint.symm
{α : Type u_1}
{l₁ : List α}
{l₂ : List α}
(d : l₁.Disjoint l₂)
:
l₂.Disjoint l₁
union
#
theorem
List.mem_union_left
{α : Type u_1}
{l₁ : List α}
{a : α}
[DecidableEq α]
(h : a ∈ l₁)
(l₂ : List α)
:
theorem
List.mem_union_right
{α : Type u_1}
{l₂ : List α}
{a : α}
[DecidableEq α]
(l₁ : List α)
(h : a ∈ l₂)
:
theorem
List.forall_mem_of_forall_mem_union_left
{α : Type u_1}
{l₁ : List α}
{l₂ : List α}
{p : α → Prop}
[DecidableEq α]
(h : ∀ (x : α), x ∈ l₁ ∪ l₂ → p x)
(x : α)
:
x ∈ l₁ → p x
theorem
List.forall_mem_of_forall_mem_union_right
{α : Type u_1}
{l₁ : List α}
{l₂ : List α}
{p : α → Prop}
[DecidableEq α]
(h : ∀ (x : α), x ∈ l₁ ∪ l₂ → p x)
(x : α)
:
x ∈ l₂ → p x
inter
#
theorem
List.mem_of_mem_inter_left
{α : Type u_1}
{l₁ : List α}
{l₂ : List α}
{a : α}
[DecidableEq α]
:
theorem
List.mem_of_mem_inter_right
{α : Type u_1}
{l₁ : List α}
{l₂ : List α}
{a : α}
[DecidableEq α]
(h : a ∈ l₁ ∩ l₂)
:
a ∈ l₂
theorem
List.mem_inter_of_mem_of_mem
{α : Type u_1}
{l₁ : List α}
{l₂ : List α}
{a : α}
[DecidableEq α]
(h₁ : a ∈ l₁)
(h₂ : a ∈ l₂)
:
theorem
List.forall_mem_inter_of_forall_left
{α : Type u_1}
{l₁ : List α}
{p : α → Prop}
[DecidableEq α]
(h : ∀ (x : α), x ∈ l₁ → p x)
(l₂ : List α)
(x : α)
:
theorem
List.forall_mem_inter_of_forall_right
{α : Type u_1}
{l₂ : List α}
{p : α → Prop}
[DecidableEq α]
(l₁ : List α)
(h : ∀ (x : α), x ∈ l₂ → p x)
(x : α)
:
@[simp]
theorem
List.inter_reverse
{α : Type u_1}
[DecidableEq α]
{xs : List α}
{ys : List α}
:
xs.inter ys.reverse = xs.inter ys
bagInter
#
@[simp]
@[simp]
@[simp]
theorem
List.cons_bagInter_of_pos
{α : Type u_1}
{l₂ : List α}
{a : α}
[DecidableEq α]
(l₁ : List α)
(h : a ∈ l₂)
:
@[simp]
theorem
List.cons_bagInter_of_neg
{α : Type u_1}
{l₂ : List α}
{a : α}
[DecidableEq α]
(l₁ : List α)
(h : ¬a ∈ l₂)
:
@[simp]
theorem
List.count_bagInter
{α : Type u_1}
[DecidableEq α]
{a : α}
{l₁ : List α}
{l₂ : List α}
:
List.count a (l₁.bagInter l₂) = min (List.count a l₁) (List.count a l₂)
theorem
List.bagInter_sublist_left
{α : Type u_1}
[DecidableEq α]
(l₁ : List α)
(l₂ : List α)
:
(l₁.bagInter l₂).Sublist l₁
theorem
List.bagInter_nil_iff_inter_nil
{α : Type u_1}
[DecidableEq α]
(l₁ : List α)
(l₂ : List α)
: