Documentation

Mathlib.Data.Int.Defs

Basic operations on the integers #

This file contains some basic lemmas about integers.

See note [foundational algebra order theory].

TODO #

Split this file into:

theorem Int.one_pos :
0 < 1
@[simp]
theorem Int.ofNat_eq_natCast (n : ) :
Int.ofNat n = n
@[deprecated Int.ofNat_eq_natCast]
theorem Int.natCast_eq_ofNat (n : ) :
n = Int.ofNat n
theorem Int.natCast_inj {m : } {n : } :
m = n m = n
@[simp]
theorem Int.natAbs_cast (n : ) :
(n).natAbs = n
theorem Int.natCast_sub {n : } {m : } :
n m(m - n) = m - n
@[simp]
theorem Int.natCast_eq_zero {n : } :
n = 0 n = 0
theorem Int.natCast_ne_zero {n : } :
n 0 n 0
theorem Int.natCast_ne_zero_iff_pos {n : } :
n 0 0 < n
@[simp]
theorem Int.natCast_pos {n : } :
0 < n 0 < n
theorem Int.natCast_succ_pos (n : ) :
0 < n.succ
@[simp]
theorem Int.natCast_nonpos_iff {n : } :
n 0 n = 0
theorem Int.natCast_nonneg (n : ) :
0 n
@[simp]
theorem Int.sign_natCast_add_one (n : ) :
(n + 1).sign = 1
@[simp]
theorem Int.cast_id {n : } :
n = n
theorem Int.two_mul (n : ) :
2 * n = n + n
@[deprecated]
theorem Int.ofNat_bit0 (n : ) :
(bit0 n) = bit0 n
@[deprecated]
theorem Int.ofNat_bit1 (n : ) :
(bit1 n) = bit1 n

succ and pred #

def Int.succ (a : ) :

Immediate successor of an integer: succ n = n + 1

Equations
  • a.succ = a + 1
Instances For
    def Int.pred (a : ) :

    Immediate predecessor of an integer: pred n = n - 1

    Equations
    • a.pred = a - 1
    Instances For
      theorem Int.natCast_succ (n : ) :
      n.succ = (n).succ
      theorem Int.pred_succ (a : ) :
      a.succ.pred = a
      theorem Int.succ_pred (a : ) :
      a.pred.succ = a
      theorem Int.neg_succ (a : ) :
      -a.succ = (-a).pred
      theorem Int.succ_neg_succ (a : ) :
      (-a.succ).succ = -a
      theorem Int.neg_pred (a : ) :
      -a.pred = (-a).succ
      theorem Int.pred_neg_pred (a : ) :
      (-a.pred).pred = -a
      theorem Int.pred_nat_succ (n : ) :
      (n.succ).pred = n
      theorem Int.neg_nat_succ (n : ) :
      -n.succ = (-n).pred
      theorem Int.succ_neg_natCast_succ (n : ) :
      (-n.succ).succ = -n
      theorem Int.natCast_pred_of_pos {n : } (h : 0 < n) :
      (n - 1) = n - 1
      theorem Int.lt_succ_self (a : ) :
      a < a.succ
      theorem Int.pred_self_lt (a : ) :
      a.pred < a
      theorem Int.le_add_one_iff {m : } {n : } :
      m n + 1 m n m = n + 1
      theorem Int.sub_one_lt_iff {m : } {n : } :
      m - 1 < n m n
      theorem Int.le_sub_one_iff {m : } {n : } :
      m n - 1 m < n
      theorem Int.induction_on {p : Prop} (i : ) (hz : p 0) (hp : ∀ (i : ), p ip (i + 1)) (hn : ∀ (i : ), p (-i)p (-i - 1)) :
      p i
      def Int.inductionOn' {C : Sort u_1} (z : ) (b : ) (H0 : C b) (Hs : (k : ) → b kC kC (k + 1)) (Hp : (k : ) → k bC kC (k - 1)) :
      C z

      Inductively define a function on by defining it at b, for the succ of a number greater than b, and the pred of a number less than b.

      Equations
      Instances For
        def Int.inductionOn'.pos {C : Sort u_1} (b : ) (H0 : C b) (Hs : (k : ) → b kC kC (k + 1)) (n : ) :
        C (b + n)

        The positive case of Int.inductionOn'.

        Equations
        Instances For
          def Int.inductionOn'.neg {C : Sort u_1} (b : ) (H0 : C b) (Hp : (k : ) → k bC kC (k - 1)) (n : ) :
          C (b + Int.negSucc n)

          The negative case of Int.inductionOn'.

          Equations
          Instances For
            def Int.negInduction {C : Sort u_1} (nat : (n : ) → C n) (neg : (n : ) → C nC (-n)) (n : ) :
            C n

            Inductively define a function on by defining it on and extending it from n to -n.

            Equations
            Instances For
              theorem Int.le_induction {P : Prop} {m : } (h0 : P m) (h1 : ∀ (n : ), m nP nP (n + 1)) (n : ) :
              m nP n

              See Int.inductionOn' for an induction in both directions.

              theorem Int.le_induction_down {P : Prop} {m : } (h0 : P m) (h1 : ∀ (n : ), n mP nP (n - 1)) (n : ) :
              n mP n

              See Int.inductionOn' for an induction in both directions.

              nat abs #

              @[simp]
              theorem Int.natAbs_ofNat' (n : ) :
              (Int.ofNat n).natAbs = n
              theorem Int.natAbs_add_of_nonneg {a : } {b : } :
              0 a0 b(a + b).natAbs = a.natAbs + b.natAbs
              theorem Int.natAbs_add_of_nonpos {a : } {b : } (ha : a 0) (hb : b 0) :
              (a + b).natAbs = a.natAbs + b.natAbs
              @[deprecated Int.natAbs_ne_zero]
              theorem Int.natAbs_ne_zero_of_ne_zero {a : } :
              a 0a.natAbs 0
              theorem Int.natAbs_sq (x : ) :
              x.natAbs ^ 2 = x ^ 2
              theorem Int.natAbs_pow_two (x : ) :
              x.natAbs ^ 2 = x ^ 2

              Alias of Int.natAbs_sq.

              / #

              @[simp]
              theorem Int.natCast_div (m : ) (n : ) :
              (m / n) = m / n
              theorem Int.natCast_ediv (m : ) (n : ) :
              (m / n) = (m).ediv n
              theorem Int.ediv_of_neg_of_pos {a : } {b : } (Ha : a < 0) (Hb : 0 < b) :
              a.ediv b = -((-a - 1) / b + 1)

              mod #

              @[simp]
              theorem Int.natCast_mod (m : ) (n : ) :
              (m % n) = m % n
              theorem Int.add_emod_eq_add_mod_right {m : } {n : } {k : } (i : ) (H : m % n = k % n) :
              (m + i) % n = (k + i) % n
              @[simp]
              theorem Int.neg_emod_two (i : ) :
              -i % 2 = i % 2

              properties of / and % #

              theorem Int.emod_two_eq_zero_or_one (n : ) :
              n % 2 = 0 n % 2 = 1

              dvd #

              theorem Int.ediv_dvd_ediv {a : } {b : } {c : } :
              a bb cb / a c / a
              theorem Int.exists_lt_and_lt_iff_not_dvd {n : } (m : ) (hn : 0 < n) :
              (∃ (k : ), n * k < m m < n * (k + 1)) ¬n m

              If n > 0 then m is not divisible by n iff it is between n * k and n * (k + 1) for some k.

              theorem Int.natCast_dvd_natCast {m : } {n : } :
              m n m n
              theorem Int.natCast_dvd {n : } {m : } :
              m n m n.natAbs
              theorem Int.dvd_natCast {m : } {n : } :
              m n m.natAbs n
              theorem Int.natAbs_ediv (a : ) (b : ) (H : b a) :
              (a / b).natAbs = a.natAbs / b.natAbs
              theorem Int.dvd_of_mul_dvd_mul_left {a : } {m : } {n : } (ha : a 0) (h : a * m a * n) :
              m n
              theorem Int.dvd_of_mul_dvd_mul_right {a : } {m : } {n : } (ha : a 0) (h : m * a n * a) :
              m n
              theorem Int.eq_mul_div_of_mul_eq_mul_of_dvd_left {a : } {b : } {c : } {d : } (hb : b 0) (hbc : b c) (h : b * a = c * d) :
              a = c / b * d
              theorem Int.eq_zero_of_dvd_of_natAbs_lt_natAbs {m : } {n : } (hmn : m n) (hnm : n.natAbs < m.natAbs) :
              n = 0

              If an integer with larger absolute value divides an integer, it is zero.

              theorem Int.eq_zero_of_dvd_of_nonneg_of_lt {m : } {n : } (hm : 0 m) (hmn : m < n) (hnm : n m) :
              m = 0
              theorem Int.eq_of_mod_eq_of_natAbs_sub_lt_natAbs {a : } {b : } {c : } (h1 : a % b = c) (h2 : (a - c).natAbs < b.natAbs) :
              a = c

              If two integers are congruent to a sufficiently large modulus, they are equal.

              theorem Int.ofNat_add_negSucc_of_ge {m : } {n : } (h : n.succ m) :
              theorem Int.natAbs_le_of_dvd_ne_zero {m : } {n : } (hmn : m n) (hn : n 0) :
              m.natAbs n.natAbs
              @[deprecated Int.natCast_dvd_natCast]
              theorem Int.coe_nat_dvd {m : } {n : } :
              m n m n

              Alias of Int.natCast_dvd_natCast.

              @[deprecated Int.dvd_natCast]
              theorem Int.coe_nat_dvd_right {m : } {n : } :
              m n m.natAbs n

              Alias of Int.dvd_natCast.

              @[deprecated Int.natCast_dvd]
              theorem Int.coe_nat_dvd_left {n : } {m : } :
              m n m n.natAbs

              Alias of Int.natCast_dvd.

              / and ordering #

              theorem Int.natAbs_eq_of_dvd_dvd {m : } {n : } (hmn : m n) (hnm : n m) :
              m.natAbs = n.natAbs
              theorem Int.ediv_dvd_of_dvd {m : } {n : } (hmn : m n) :
              n / m n

              sign #

              theorem Int.sign_natCast_of_ne_zero {n : } (hn : n 0) :
              (n).sign = 1
              theorem Int.sign_add_eq_of_sign_eq {m : } {n : } :
              m.sign = n.sign(m + n).sign = n.sign

              toNat #

              @[simp]
              theorem Int.toNat_natCast (n : ) :
              (n).toNat = n
              @[simp]
              theorem Int.toNat_natCast_add_one {n : } :
              (n + 1).toNat = n + 1
              @[simp]
              theorem Int.toNat_le {m : } {n : } :
              m.toNat n m n
              @[simp]
              theorem Int.lt_toNat {n : } {m : } :
              m < n.toNat m < n
              theorem Int.toNat_le_toNat {a : } {b : } (h : a b) :
              a.toNat b.toNat
              theorem Int.toNat_lt_toNat {a : } {b : } (hb : 0 < b) :
              a.toNat < b.toNat a < b
              theorem Int.lt_of_toNat_lt {a : } {b : } (h : a.toNat < b.toNat) :
              a < b
              @[simp]
              theorem Int.toNat_pred_coe_of_pos {i : } (h : 0 < i) :
              (i.toNat - 1) = i - 1
              @[simp]
              theorem Int.toNat_eq_zero {n : } :
              n.toNat = 0 n 0
              @[simp]
              theorem Int.toNat_sub_of_le {a : } {b : } (h : b a) :
              (a - b).toNat = a - b
              @[deprecated Int.natCast_pos]
              theorem Int.coe_nat_pos {n : } :
              0 < n 0 < n

              Alias of Int.natCast_pos.

              @[deprecated Int.natCast_succ_pos]
              theorem Int.coe_nat_succ_pos (n : ) :
              0 < n.succ

              Alias of Int.natCast_succ_pos.

              theorem Int.toNat_lt' {m : } {n : } (hn : n 0) :
              m.toNat < n m < n
              theorem Int.natMod_lt {m : } {n : } (hn : n 0) :
              m.natMod n < n
              @[simp]
              theorem Int.coe_nat_pow (m : ) (n : ) :
              (m ^ n) = m ^ n
              @[simp]
              theorem Int.pow_eq (m : ) (n : ) :
              m.pow n = m ^ n
              @[deprecated Int.ofNat_eq_natCast]
              theorem Int.ofNat_eq_cast (n : ) :
              Int.ofNat n = n

              Alias of Int.ofNat_eq_natCast.

              @[deprecated Int.natCast_inj]
              theorem Int.cast_eq_cast_iff_Nat {m : } {n : } :
              m = n m = n

              Alias of Int.natCast_inj.

              @[deprecated Int.natCast_sub]
              theorem Int.coe_nat_sub {n : } {m : } :
              n m(m - n) = m - n

              Alias of Int.natCast_sub.

              @[deprecated Int.natCast_nonneg]
              theorem Int.coe_nat_nonneg (n : ) :
              0 n

              Alias of Int.natCast_nonneg.

              @[deprecated Int.sign_natCast_add_one]
              theorem Int.sign_coe_add_one (n : ) :
              (n + 1).sign = 1

              Alias of Int.sign_natCast_add_one.

              @[deprecated Int.natCast_succ]
              theorem Int.nat_succ_eq_int_succ (n : ) :
              n.succ = (n).succ

              Alias of Int.natCast_succ.

              @[deprecated Int.succ_neg_natCast_succ]
              theorem Int.succ_neg_nat_succ (n : ) :
              (-n.succ).succ = -n

              Alias of Int.succ_neg_natCast_succ.

              @[deprecated Int.natCast_pred_of_pos]
              theorem Int.coe_pred_of_pos {n : } (h : 0 < n) :
              (n - 1) = n - 1

              Alias of Int.natCast_pred_of_pos.

              @[deprecated Int.natCast_div]
              theorem Int.coe_nat_div (m : ) (n : ) :
              (m / n) = m / n

              Alias of Int.natCast_div.

              @[deprecated Int.natCast_ediv]
              theorem Int.coe_nat_ediv (m : ) (n : ) :
              (m / n) = (m).ediv n

              Alias of Int.natCast_ediv.

              @[deprecated Int.sign_natCast_of_ne_zero]
              theorem Int.sign_coe_nat_of_nonzero {n : } (hn : n 0) :
              (n).sign = 1

              Alias of Int.sign_natCast_of_ne_zero.

              @[deprecated Int.toNat_natCast]
              theorem Int.toNat_coe_nat (n : ) :
              (n).toNat = n

              Alias of Int.toNat_natCast.

              @[deprecated Int.toNat_natCast_add_one]
              theorem Int.toNat_coe_nat_add_one {n : } :
              (n + 1).toNat = n + 1

              Alias of Int.toNat_natCast_add_one.