Limits and asymptotics of power functions at +∞ #
This file contains results about the limiting behaviour of power functions at +∞. For convenience
some results on asymptotics as x → 0 (those which are not just continuity statements) are also
located here.
Limits at +∞ #
theorem
tendsto_rpow_atTop
{y : ℝ}
(hy : 0 < y)
:
Filter.Tendsto (fun (x : ℝ) => x ^ y) Filter.atTop Filter.atTop
The function x ^ y tends to +∞ at +∞ for any positive real y.
theorem
tendsto_rpow_neg_atTop
{y : ℝ}
(hy : 0 < y)
:
Filter.Tendsto (fun (x : ℝ) => x ^ (-y)) Filter.atTop (nhds 0)
The function x ^ (-y) tends to 0 at +∞ for any positive real y.
theorem
tendsto_rpow_atTop_of_base_lt_one
(b : ℝ)
(hb₀ : -1 < b)
(hb₁ : b < 1)
:
Filter.Tendsto (fun (x : ℝ) => b ^ x) Filter.atTop (nhds 0)
theorem
tendsto_rpow_atTop_of_base_gt_one
(b : ℝ)
(hb : 1 < b)
:
Filter.Tendsto (fun (x : ℝ) => b ^ x) Filter.atBot (nhds 0)
theorem
tendsto_rpow_atBot_of_base_lt_one
(b : ℝ)
(hb₀ : 0 < b)
(hb₁ : b < 1)
:
Filter.Tendsto (fun (x : ℝ) => b ^ x) Filter.atBot Filter.atTop
theorem
tendsto_rpow_atBot_of_base_gt_one
(b : ℝ)
(hb : 1 < b)
:
Filter.Tendsto (fun (x : ℝ) => b ^ x) Filter.atBot (nhds 0)
The function x ^ (1 / x) tends to 1 at +∞.
The function x ^ (-1 / x) tends to 1 at +∞.
theorem
tendsto_exp_div_rpow_atTop
(s : ℝ)
:
Filter.Tendsto (fun (x : ℝ) => Real.exp x / x ^ s) Filter.atTop Filter.atTop
The function exp(x) / x ^ s tends to +∞ at +∞, for any real number s.
@[deprecated tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero]
Alias of tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero.
The function x ^ s * exp (-b * x) tends to 0 at +∞, for any real s and b > 0.
theorem
NNReal.tendsto_rpow_atTop
{y : ℝ}
(hy : 0 < y)
:
Filter.Tendsto (fun (x : NNReal) => x ^ y) Filter.atTop Filter.atTop
Asymptotic results: IsBigO, IsLittleO and IsTheta #
theorem
tendsto_log_div_rpow_nhds_zero
{r : ℝ}
(hr : r < 0)
:
Filter.Tendsto (fun (x : ℝ) => Real.log x / x ^ r) (nhdsWithin 0 (Set.Ioi 0)) (nhds 0)
theorem
tendsto_log_mul_rpow_nhds_zero
{r : ℝ}
(hr : 0 < r)
:
Filter.Tendsto (fun (x : ℝ) => Real.log x * x ^ r) (nhdsWithin 0 (Set.Ioi 0)) (nhds 0)
theorem
tendsto_log_mul_self_nhds_zero_left :
Filter.Tendsto (fun (x : ℝ) => Real.log x * x) (nhdsWithin 0 (Set.Iio 0)) (nhds 0)