Derivative and series expansion of real logarithm #
In this file we prove that Real.log is infinitely smooth at all nonzero x : ℝ. We also prove
that the series ∑' n : ℕ, x ^ (n + 1) / (n + 1) converges to (-Real.log (1 - x)) for all
x : ℝ, |x| < 1.
Tags #
logarithm, derivative
theorem
HasDerivWithinAt.log
{f : ℝ → ℝ}
{x : ℝ}
{f' : ℝ}
{s : Set ℝ}
(hf : HasDerivWithinAt f f' s x)
(hx : f x ≠ 0)
:
HasDerivWithinAt (fun (y : ℝ) => Real.log (f y)) (f' / f x) s x
theorem
HasDerivAt.log
{f : ℝ → ℝ}
{x : ℝ}
{f' : ℝ}
(hf : HasDerivAt f f' x)
(hx : f x ≠ 0)
:
HasDerivAt (fun (y : ℝ) => Real.log (f y)) (f' / f x) x
theorem
HasStrictDerivAt.log
{f : ℝ → ℝ}
{x : ℝ}
{f' : ℝ}
(hf : HasStrictDerivAt f f' x)
(hx : f x ≠ 0)
:
HasStrictDerivAt (fun (y : ℝ) => Real.log (f y)) (f' / f x) x
theorem
derivWithin.log
{f : ℝ → ℝ}
{x : ℝ}
{s : Set ℝ}
(hf : DifferentiableWithinAt ℝ f s x)
(hx : f x ≠ 0)
(hxs : UniqueDiffWithinAt ℝ s x)
:
derivWithin (fun (x : ℝ) => Real.log (f x)) s x = derivWithin f s x / f x
theorem
HasFDerivWithinAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(hx : f x ≠ 0)
:
HasFDerivWithinAt (fun (x : E) => Real.log (f x)) ((f x)⁻¹ • f') s x
theorem
HasFDerivAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : HasFDerivAt f f' x)
(hx : f x ≠ 0)
:
HasFDerivAt (fun (x : E) => Real.log (f x)) ((f x)⁻¹ • f') x
theorem
HasStrictFDerivAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : HasStrictFDerivAt f f' x)
(hx : f x ≠ 0)
:
HasStrictFDerivAt (fun (x : E) => Real.log (f x)) ((f x)⁻¹ • f') x
theorem
DifferentiableWithinAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt ℝ f s x)
(hx : f x ≠ 0)
:
DifferentiableWithinAt ℝ (fun (x : E) => Real.log (f x)) s x
@[simp]
theorem
DifferentiableAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
(hx : f x ≠ 0)
:
DifferentiableAt ℝ (fun (x : E) => Real.log (f x)) x
theorem
ContDiffAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{n : ℕ∞}
(hf : ContDiffAt ℝ n f x)
(hx : f x ≠ 0)
:
ContDiffAt ℝ n (fun (x : E) => Real.log (f x)) x
theorem
ContDiffWithinAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{s : Set E}
{n : ℕ∞}
(hf : ContDiffWithinAt ℝ n f s x)
(hx : f x ≠ 0)
:
ContDiffWithinAt ℝ n (fun (x : E) => Real.log (f x)) s x
theorem
ContDiffOn.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
{n : ℕ∞}
(hf : ContDiffOn ℝ n f s)
(hs : ∀ x ∈ s, f x ≠ 0)
:
ContDiffOn ℝ n (fun (x : E) => Real.log (f x)) s
theorem
ContDiff.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{n : ℕ∞}
(hf : ContDiff ℝ n f)
(h : ∀ (x : E), f x ≠ 0)
:
theorem
DifferentiableOn.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
(hf : DifferentiableOn ℝ f s)
(hx : ∀ x ∈ s, f x ≠ 0)
:
DifferentiableOn ℝ (fun (x : E) => Real.log (f x)) s
@[simp]
theorem
Differentiable.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
(hf : Differentiable ℝ f)
(hx : ∀ (x : E), f x ≠ 0)
:
Differentiable ℝ fun (x : E) => Real.log (f x)
theorem
fderivWithin.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt ℝ f s x)
(hx : f x ≠ 0)
(hxs : UniqueDiffWithinAt ℝ s x)
:
fderivWithin ℝ (fun (x : E) => Real.log (f x)) s x = (f x)⁻¹ • fderivWithin ℝ f s x
@[simp]
theorem
fderiv.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
(hx : f x ≠ 0)
:
A crude lemma estimating the difference between log (1-x) and its Taylor series at 0,
where the main point of the bound is that it tends to 0. The goal is to deduce the series
expansion of the logarithm, in hasSum_pow_div_log_of_abs_lt_1.
Porting note (#11215): TODO: use one of generic theorems about Taylor's series to prove this estimate.
@[deprecated Real.hasSum_log_sub_log_of_abs_lt_one]
Alias of Real.hasSum_log_sub_log_of_abs_lt_one.
Power series expansion of log(1 + x) - log(1 - x) for |x| < 1.