Evaluation of specific improper integrals #
This file contains some integrability results, and evaluations of integrals, over ℝ or over
half-infinite intervals in ℝ.
See also #
Mathlib.Analysis.SpecialFunctions.Integrals-- integrals over finite intervalsMathlib.Analysis.SpecialFunctions.Gaussian-- integral ofexp (-x ^ 2)Mathlib.Analysis.SpecialFunctions.JapaneseBracket-- integrability of(1+‖x‖)^(-r).
theorem
integrableOn_exp_Iic
(c : ℝ)
:
MeasureTheory.IntegrableOn Real.exp (Set.Iic c) MeasureTheory.volume
theorem
integrableOn_Ioi_rpow_of_lt
{a : ℝ}
(ha : a < -1)
{c : ℝ}
(hc : 0 < c)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => t ^ a) (Set.Ioi c) MeasureTheory.volume
If 0 < c, then (fun t : ℝ ↦ t ^ a) is integrable on (c, ∞) for all a < -1.
theorem
not_integrableOn_Ioi_rpow
(s : ℝ)
:
¬MeasureTheory.IntegrableOn (fun (x : ℝ) => x ^ s) (Set.Ioi 0) MeasureTheory.volume
The real power function with any exponent is not integrable on (0, +∞).
theorem
integrableOn_Ioi_cpow_of_lt
{a : ℂ}
(ha : a.re < -1)
{c : ℝ}
(hc : 0 < c)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => ↑t ^ a) (Set.Ioi c) MeasureTheory.volume
theorem
not_integrableOn_Ioi_cpow
(s : ℂ)
:
¬MeasureTheory.IntegrableOn (fun (x : ℝ) => ↑x ^ s) (Set.Ioi 0) MeasureTheory.volume
The complex power function with any exponent is not integrable on (0, +∞).
theorem
integrable_inv_one_add_sq :
MeasureTheory.Integrable (fun (x : ℝ) => (1 + x ^ 2)⁻¹) MeasureTheory.volume