Gaussian integral #
We prove various versions of the formula for the Gaussian integral:
integral_gaussian: for realbwe have∫ x:ℝ, exp (-b * x^2) = √(π / b).integral_gaussian_complex: for complexbwith0 < re bwe have∫ x:ℝ, exp (-b * x^2) = (π / b) ^ (1 / 2).integral_gaussian_Ioiandintegral_gaussian_complex_Ioi: variants for integrals overIoi 0.Complex.Gamma_one_half_eq: the formulaΓ (1 / 2) = √π.
theorem
integrable_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable (fun (x : ℝ) => Complex.exp (-b * ↑x ^ 2)) MeasureTheory.volume
theorem
integrable_mul_cexp_neg_mul_sq
{b : ℂ}
(hb : 0 < b.re)
:
MeasureTheory.Integrable (fun (x : ℝ) => ↑x * Complex.exp (-b * ↑x ^ 2)) MeasureTheory.volume
theorem
continuousAt_gaussian_integral
(b : ℂ)
(hb : 0 < b.re)
:
ContinuousAt (fun (c : ℂ) => ∫ (x : ℝ), Complex.exp (-c * ↑x ^ 2)) b
The special-value formula Γ(1/2) = √π, which is equivalent to the Gaussian integral.
The special-value formula Γ(1/2) = √π, which is equivalent to the Gaussian integral.