Maps on the unit circle #
In this file we prove some basic lemmas about expMapCircle and the restriction of Complex.arg
to the unit circle. These two maps define a partial equivalence between circle and ℝ, see
circle.argPartialEquiv and circle.argEquiv, that sends the whole circle to (-π, π].
@[simp]
@[simp]
@[simp]
Complex.arg ∘ (↑) and expMapCircle define a partial equivalence between circle and ℝ
with source = Set.univ and target = Set.Ioc (-π) π.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
Complex.arg and expMapCircle define an equivalence between circle and (-π, π].
Equations
- circle.argEquiv = { toFun := fun (z : ↥circle) => ⟨(↑z).arg, ⋯⟩, invFun := ⇑expMapCircle ∘ Subtype.val, left_inv := circle.argEquiv.proof_2, right_inv := circle.argEquiv.proof_3 }
Instances For
theorem
leftInverse_expMapCircle_arg :
Function.LeftInverse (⇑expMapCircle) (Complex.arg ∘ Subtype.val)
theorem
invOn_arg_expMapCircle :
Set.InvOn (Complex.arg ∘ Subtype.val) (⇑expMapCircle) (Set.Ioc (-Real.pi) Real.pi) Set.univ
theorem
surjOn_expMapCircle_neg_pi_pi :
Set.SurjOn (⇑expMapCircle) (Set.Ioc (-Real.pi) Real.pi) Set.univ
expMapCircle, applied to a Real.Angle.
Equations
- θ.expMapCircle = periodic_expMapCircle.lift θ
Instances For
@[simp]
@[simp]
@[simp]
theorem
AddCircle.homeomorphCircle'_symm_apply
(x : ↥circle)
:
AddCircle.homeomorphCircle'.symm x = ↑(↑x).arg
@[simp]
theorem
AddCircle.homeomorphCircle'_apply
(θ : Real.Angle)
:
AddCircle.homeomorphCircle' θ = θ.expMapCircle
theorem
AddCircle.homeomorphCircle'_apply_mk
(x : ℝ)
:
AddCircle.homeomorphCircle' ↑x = expMapCircle x
theorem
AddCircle.homeomorphCircle_apply
{T : ℝ}
(hT : T ≠ 0)
(x : AddCircle T)
:
(AddCircle.homeomorphCircle hT) x = x.toCircle