Basic facts about real (semi)normed spaces #
In this file we prove some theorems about (semi)normed spaces over real numberes.
Main results #
closure_ball,frontier_ball,interior_closedBall,frontier_closedBall,interior_sphere,frontier_sphere: formulas for the closure/interior/frontier of nontrivial balls and spheres in a real seminormed space;interior_closedBall',frontier_closedBall',interior_sphere',frontier_sphere': similar lemmas assuming that the ambient space is separated and nontrivial instead ofr ≠ 0.
instance
Real.punctured_nhds_module_neBot
{E : Type u_1}
[AddCommGroup E]
[TopologicalSpace E]
[ContinuousAdd E]
[Nontrivial E]
[Module ℝ E]
[ContinuousSMul ℝ E]
(x : E)
:
(nhdsWithin x {x}ᶜ).NeBot
If E is a nontrivial topological module over ℝ, then E has no isolated points.
This is a particular case of Module.punctured_nhds_neBot.
Equations
- ⋯ = ⋯
theorem
inv_norm_smul_mem_closed_unit_ball
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
:
theorem
norm_smul_of_nonneg
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
{t : ℝ}
(ht : 0 ≤ t)
(x : E)
:
theorem
closure_ball
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
:
closure (Metric.ball x r) = Metric.closedBall x r
theorem
frontier_ball
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
:
frontier (Metric.ball x r) = Metric.sphere x r
theorem
interior_closedBall
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
:
interior (Metric.closedBall x r) = Metric.ball x r
theorem
frontier_closedBall
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
:
frontier (Metric.closedBall x r) = Metric.sphere x r
theorem
interior_sphere
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
:
interior (Metric.sphere x r) = ∅
theorem
frontier_sphere
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
:
frontier (Metric.sphere x r) = Metric.sphere x r
theorem
exists_norm_eq
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
{c : ℝ}
(hc : 0 ≤ c)
:
@[simp]
theorem
nnnorm_surjective
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
:
Function.Surjective nnnorm
@[simp]
theorem
interior_closedBall'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
:
interior (Metric.closedBall x r) = Metric.ball x r
theorem
frontier_closedBall'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
:
frontier (Metric.closedBall x r) = Metric.sphere x r
@[simp]
theorem
interior_sphere'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
:
interior (Metric.sphere x r) = ∅
@[simp]
theorem
frontier_sphere'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
:
frontier (Metric.sphere x r) = Metric.sphere x r