Product of convex functions #
This file proves that the product of convex functions is convex, provided they monovary.
As corollaries, we also prove that x ↦ x ^ n is convex
Even.convexOn_pow: for evenn : ℕ.convexOn_pow: over $[0, +∞)$ forn : ℕ.convexOn_zpow: over $(0, +∞)$ Forn : ℤ.
theorem
ConvexOn.smul'
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConvexOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : MonovaryOn f g s)
:
theorem
ConcaveOn.smul'
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 E]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConcaveOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : AntivaryOn f g s)
:
theorem
ConvexOn.smul''
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 E]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConvexOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : AntivaryOn f g s)
:
theorem
ConcaveOn.smul''
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConcaveOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : MonovaryOn f g s)
:
theorem
ConvexOn.smul_concaveOn
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConvexOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : AntivaryOn f g s)
:
theorem
ConcaveOn.smul_convexOn
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 E]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConcaveOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : MonovaryOn f g s)
:
theorem
ConvexOn.smul_concaveOn'
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 E]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConvexOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : MonovaryOn f g s)
:
theorem
ConcaveOn.smul_convexOn'
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[LinearOrderedAddCommGroup F]
[Module 𝕜 E]
[Module 𝕜 F]
[Module E F]
[IsScalarTower 𝕜 E F]
[SMulCommClass 𝕜 E F]
[OrderedSMul 𝕜 F]
[OrderedSMul E F]
{s : Set 𝕜}
{f : 𝕜 → E}
{g : 𝕜 → F}
(hf : ConcaveOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : AntivaryOn f g s)
:
theorem
ConvexOn.mul
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConvexOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : MonovaryOn f g s)
:
theorem
ConcaveOn.mul
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConcaveOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : AntivaryOn f g s)
:
theorem
ConvexOn.mul'
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConvexOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : AntivaryOn f g s)
:
theorem
ConcaveOn.mul'
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConcaveOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : MonovaryOn f g s)
:
theorem
ConvexOn.mul_concaveOn
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConvexOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : AntivaryOn f g s)
:
theorem
ConcaveOn.mul_convexOn
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConcaveOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → g x ≤ 0)
(hfg : MonovaryOn f g s)
:
theorem
ConvexOn.mul_concaveOn'
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConvexOn 𝕜 s f)
(hg : ConcaveOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : MonovaryOn f g s)
:
theorem
ConcaveOn.mul_convexOn'
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
{g : 𝕜 → E}
(hf : ConcaveOn 𝕜 s f)
(hg : ConvexOn 𝕜 s g)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → f x ≤ 0)
(hg₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ g x)
(hfg : AntivaryOn f g s)
:
theorem
ConvexOn.pow
{𝕜 : Type u_1}
{E : Type u_2}
[LinearOrderedCommRing 𝕜]
[LinearOrderedCommRing E]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set 𝕜}
[IsScalarTower 𝕜 E E]
[SMulCommClass 𝕜 E E]
{f : 𝕜 → E}
(hf : ConvexOn 𝕜 s f)
(hf₀ : ∀ ⦃x : 𝕜⦄, x ∈ s → 0 ≤ f x)
(n : ℕ)
:
x^n, n : ℕ is convex on [0, +∞) for all n.
x^n, n : ℕ is convex on the whole real line whenever n is even.
x^m, m : ℤ is convex on (0, +∞) for all m.