Closure, interior, and frontier of preimages under re and im #
In this fact we use the fact that ℂ is naturally homeomorphic to ℝ × ℝ to deduce some
topological properties of Complex.re and Complex.im.
Main statements #
Each statement about Complex.re listed below has a counterpart about Complex.im.
Complex.isHomeomorphicTrivialFiberBundle_re:Complex.returnsℂinto a trivial topological fiber bundle overℝ;Complex.isOpenMap_re,Complex.quotientMap_re: in particular,Complex.reis an open map and is a quotient map;Complex.interior_preimage_re,Complex.closure_preimage_re,Complex.frontier_preimage_re: formulas forinterior (Complex.re ⁻¹' s)etc;Complex.interior_setOf_re_leetc: particular cases of the above formulas in the cases whensis one of the infinite intervalsSet.Ioi a,Set.Ici a,Set.Iio a, andSet.Iic a, formulated asinterior {z : ℂ | z.re ≤ a} = {z | z.re < a}etc.
Tags #
complex, real part, imaginary part, closure, interior, frontier
Complex.re turns ℂ into a trivial topological fiber bundle over ℝ.
Complex.im turns ℂ into a trivial topological fiber bundle over ℝ.
theorem
Complex.interior_preimage_re
(s : Set ℝ)
:
interior (Complex.re ⁻¹' s) = Complex.re ⁻¹' interior s
theorem
Complex.interior_preimage_im
(s : Set ℝ)
:
interior (Complex.im ⁻¹' s) = Complex.im ⁻¹' interior s
theorem
Complex.closure_preimage_re
(s : Set ℝ)
:
closure (Complex.re ⁻¹' s) = Complex.re ⁻¹' closure s
theorem
Complex.closure_preimage_im
(s : Set ℝ)
:
closure (Complex.im ⁻¹' s) = Complex.im ⁻¹' closure s
theorem
Complex.frontier_preimage_re
(s : Set ℝ)
:
frontier (Complex.re ⁻¹' s) = Complex.re ⁻¹' frontier s
theorem
Complex.frontier_preimage_im
(s : Set ℝ)
:
frontier (Complex.im ⁻¹' s) = Complex.im ⁻¹' frontier s
theorem
Bornology.IsBounded.reProdIm
{s : Set ℝ}
{t : Set ℝ}
(hs : Bornology.IsBounded s)
(ht : Bornology.IsBounded t)
:
Bornology.IsBounded (s ×ℂ t)