Documentation

Mathlib.Analysis.Calculus.FDeriv.Analytic

Frechet derivatives of analytic functions. #

A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of deriv when the domain is 1-dimensional.

As an application, we show that continuous multilinear maps are smooth. We also compute their iterated derivatives, in ContinuousMultilinearMap.iteratedFDeriv_eq.

theorem HasFPowerSeriesAt.hasStrictFDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {f : E โ†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
theorem HasFPowerSeriesAt.hasFDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {f : E โ†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
HasFDerivAt f ((continuousMultilinearCurryFin1 ๐•œ E F) (p 1)) x
theorem HasFPowerSeriesAt.differentiableAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {f : E โ†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
DifferentiableAt ๐•œ f x
theorem AnalyticAt.differentiableAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {x : E} :
AnalyticAt ๐•œ f x โ†’ DifferentiableAt ๐•œ f x
theorem AnalyticAt.differentiableWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {x : E} {s : Set E} (h : AnalyticAt ๐•œ f x) :
DifferentiableWithinAt ๐•œ f s x
theorem HasFPowerSeriesAt.fderiv_eq {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {f : E โ†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
fderiv ๐•œ f x = (continuousMultilinearCurryFin1 ๐•œ E F) (p 1)
theorem HasFPowerSeriesOnBall.differentiableOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {f : E โ†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) :
DifferentiableOn ๐•œ f (EMetric.ball x r)
theorem AnalyticOn.differentiableOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : AnalyticOn ๐•œ f s) :
DifferentiableOn ๐•œ f s
theorem HasFPowerSeriesOnBall.hasFDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {f : E โ†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : โ†‘โ€–yโ€–โ‚Š < r) :
HasFDerivAt f ((continuousMultilinearCurryFin1 ๐•œ E F) (p.changeOrigin y 1)) (x + y)
theorem HasFPowerSeriesOnBall.fderiv_eq {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {f : E โ†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : โ†‘โ€–yโ€–โ‚Š < r) :
fderiv ๐•œ f (x + y) = (continuousMultilinearCurryFin1 ๐•œ E F) (p.changeOrigin y 1)
theorem HasFPowerSeriesOnBall.fderiv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {f : E โ†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) :
HasFPowerSeriesOnBall (fderiv ๐•œ f) p.derivSeries x r

If a function has a power series on a ball, then so does its derivative.

theorem AnalyticOn.fderiv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} [CompleteSpace F] (h : AnalyticOn ๐•œ f s) :
AnalyticOn ๐•œ (fderiv ๐•œ f) s

If a function is analytic on a set s, so is its Frรฉchet derivative.

theorem AnalyticOn.iteratedFDeriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} [CompleteSpace F] (h : AnalyticOn ๐•œ f s) (n : โ„•) :
AnalyticOn ๐•œ (iteratedFDeriv ๐•œ n f) s

If a function is analytic on a set s, so are its successive Frรฉchet derivative.

theorem AnalyticOn.contDiffOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} [CompleteSpace F] (h : AnalyticOn ๐•œ f s) {n : โ„•โˆž} :
ContDiffOn ๐•œ n f s

An analytic function is infinitely differentiable.

theorem AnalyticAt.contDiffAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {x : E} [CompleteSpace F] (h : AnalyticAt ๐•œ f x) {n : โ„•โˆž} :
ContDiffAt ๐•œ n f x
theorem HasFPowerSeriesAt.hasStrictDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ ๐•œ F} {f : ๐•œ โ†’ F} {x : ๐•œ} (h : HasFPowerSeriesAt f p x) :
HasStrictDerivAt f ((p 1) fun (x : Fin 1) => 1) x
theorem HasFPowerSeriesAt.hasDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ ๐•œ F} {f : ๐•œ โ†’ F} {x : ๐•œ} (h : HasFPowerSeriesAt f p x) :
HasDerivAt f ((p 1) fun (x : Fin 1) => 1) x
theorem HasFPowerSeriesAt.deriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ ๐•œ F} {f : ๐•œ โ†’ F} {x : ๐•œ} (h : HasFPowerSeriesAt f p x) :
deriv f x = (p 1) fun (x : Fin 1) => 1
theorem AnalyticOn.deriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {s : Set ๐•œ} [CompleteSpace F] (h : AnalyticOn ๐•œ f s) :
AnalyticOn ๐•œ (deriv f) s

If a function is analytic on a set s, so is its derivative.

theorem AnalyticOn.iterated_deriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {s : Set ๐•œ} [CompleteSpace F] (h : AnalyticOn ๐•œ f s) (n : โ„•) :
AnalyticOn ๐•œ (deriv^[n] f) s

If a function is analytic on a set s, so are its successive derivatives.

The case of continuously polynomial functions. We get the same differentiability results as for analytic functions, but without the assumptions that F is complete.

theorem HasFiniteFPowerSeriesOnBall.differentiableOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {n : โ„•} {f : E โ†’ F} {x : E} (h : HasFiniteFPowerSeriesOnBall f p x n r) :
DifferentiableOn ๐•œ f (EMetric.ball x r)
theorem HasFiniteFPowerSeriesOnBall.hasFDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {n : โ„•} {f : E โ†’ F} {x : E} (h : HasFiniteFPowerSeriesOnBall f p x n r) {y : E} (hy : โ†‘โ€–yโ€–โ‚Š < r) :
HasFDerivAt f ((continuousMultilinearCurryFin1 ๐•œ E F) (p.changeOrigin y 1)) (x + y)
theorem HasFiniteFPowerSeriesOnBall.fderiv_eq {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {n : โ„•} {f : E โ†’ F} {x : E} (h : HasFiniteFPowerSeriesOnBall f p x n r) {y : E} (hy : โ†‘โ€–yโ€–โ‚Š < r) :
fderiv ๐•œ f (x + y) = (continuousMultilinearCurryFin1 ๐•œ E F) (p.changeOrigin y 1)
theorem HasFiniteFPowerSeriesOnBall.fderiv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {n : โ„•} {f : E โ†’ F} {x : E} (h : HasFiniteFPowerSeriesOnBall f p x (n + 1) r) :
HasFiniteFPowerSeriesOnBall (fderiv ๐•œ f) p.derivSeries x n r

If a function has a finite power series on a ball, then so does its derivative.

theorem HasFiniteFPowerSeriesOnBall.fderiv' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {r : ENNReal} {n : โ„•} {f : E โ†’ F} {x : E} (h : HasFiniteFPowerSeriesOnBall f p x n r) :
HasFiniteFPowerSeriesOnBall (fderiv ๐•œ f) p.derivSeries x (n - 1) r

If a function has a finite power series on a ball, then so does its derivative. This is a variant of HasFiniteFPowerSeriesOnBall.fderiv where the degree of f is < n and not < n + 1.

theorem CPolynomialOn.fderiv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : CPolynomialOn ๐•œ f s) :
CPolynomialOn ๐•œ (fderiv ๐•œ f) s

If a function is polynomial on a set s, so is its Frรฉchet derivative.

theorem CPolynomialOn.iteratedFDeriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : CPolynomialOn ๐•œ f s) (n : โ„•) :
CPolynomialOn ๐•œ (iteratedFDeriv ๐•œ n f) s

If a function is polynomial on a set s, so are its successive Frรฉchet derivative.

theorem CPolynomialOn.contDiffOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : CPolynomialOn ๐•œ f s) {n : โ„•โˆž} :
ContDiffOn ๐•œ n f s

A polynomial function is infinitely differentiable.

theorem CPolynomialAt.contDiffAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {x : E} (h : CPolynomialAt ๐•œ f x) {n : โ„•โˆž} :
ContDiffAt ๐•œ n f x
theorem CPolynomialOn.deriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {s : Set ๐•œ} (h : CPolynomialOn ๐•œ f s) :
CPolynomialOn ๐•œ (deriv f) s

If a function is polynomial on a set s, so is its derivative.

theorem CPolynomialOn.iterated_deriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {s : Set ๐•œ} (h : CPolynomialOn ๐•œ f s) (n : โ„•) :
CPolynomialOn ๐•œ (deriv^[n] f) s

If a function is polynomial on a set s, so are its successive derivatives.

theorem ContinuousMultilinearMap.hasFiniteFPowerSeriesOnBall {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) :
HasFiniteFPowerSeriesOnBall (โ‡‘f) f.toFormalMultilinearSeries 0 (Fintype.card ฮน + 1) โŠค
theorem ContinuousMultilinearMap.changeOriginSeries_support {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) {k : โ„•} {l : โ„•} (h : k + l โ‰  Fintype.card ฮน) :
f.toFormalMultilinearSeries.changeOriginSeries k l = 0
theorem ContinuousMultilinearMap.changeOrigin_toFormalMultilinearSeries {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) (x : (i : ฮน) โ†’ E i) [DecidableEq ฮน] :
(continuousMultilinearCurryFin1 ๐•œ ((i : ฮน) โ†’ E i) F) (f.toFormalMultilinearSeries.changeOrigin x 1) = f.linearDeriv x
theorem ContinuousMultilinearMap.hasFDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) (x : (i : ฮน) โ†’ E i) [DecidableEq ฮน] :
HasFDerivAt (โ‡‘f) (f.linearDeriv x) x
theorem ContinuousMultilinearMap.hasFTaylorSeriesUpTo_iteratedFDeriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) :
HasFTaylorSeriesUpTo โŠค โ‡‘f fun (v : (i : ฮน) โ†’ E i) (n : โ„•) => f.iteratedFDeriv n v

A continuous multilinear function f admits a Taylor series, whose successive terms are given by f.iteratedFDeriv n. This is the point of the definition of f.iteratedFDeriv.

theorem ContinuousMultilinearMap.iteratedFDeriv_eq {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) (n : โ„•) :
iteratedFDeriv ๐•œ n โ‡‘f = f.iteratedFDeriv n
theorem ContinuousMultilinearMap.norm_iteratedFDeriv_le {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) (n : โ„•) (x : (i : ฮน) โ†’ E i) :
โ€–iteratedFDeriv ๐•œ n (โ‡‘f) xโ€– โ‰ค โ†‘((Fintype.card ฮน).descFactorial n) * โ€–fโ€– * โ€–xโ€– ^ (Fintype.card ฮน - n)
theorem ContinuousMultilinearMap.cPolynomialAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) (x : (i : ฮน) โ†’ E i) :
CPolynomialAt ๐•œ (โ‡‘f) x
theorem ContinuousMultilinearMap.cPolyomialOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) :
CPolynomialOn ๐•œ โ‡‘f โŠค
theorem ContinuousMultilinearMap.contDiffAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) {n : โ„•โˆž} (x : (i : ฮน) โ†’ E i) :
ContDiffAt ๐•œ n (โ‡‘f) x
theorem ContinuousMultilinearMap.contDiff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ NormedAddCommGroup (E i)] [(i : ฮน) โ†’ NormedSpace ๐•œ (E i)] [Fintype ฮน] (f : ContinuousMultilinearMap ๐•œ E F) {n : โ„•โˆž} :
ContDiff ๐•œ n โ‡‘f
theorem FormalMultilinearSeries.derivSeries_apply_diag {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (p : FormalMultilinearSeries ๐•œ E F) (n : โ„•) (x : E) :
((p.derivSeries n) fun (x_1 : Fin n) => x) x = (n + 1) โ€ข (p (n + 1)) fun (x_1 : Fin (n + 1)) => x
theorem HasFPowerSeriesOnBall.iteratedFDeriv_zero_apply_diag {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {f : E โ†’ F} {x : E} {r : ENNReal} (h : HasFPowerSeriesOnBall f p x r) :
iteratedFDeriv ๐•œ 0 f x = p 0
theorem HasFPowerSeriesOnBall.factorial_smul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {f : E โ†’ F} {x : E} {r : ENNReal} (h : HasFPowerSeriesOnBall f p x r) (y : E) [CompleteSpace F] (n : โ„•) :
(n.factorial โ€ข (p n) fun (x : Fin n) => y) = (iteratedFDeriv ๐•œ n f x) fun (x : Fin n) => y
theorem HasFPowerSeriesOnBall.hasSum_iteratedFDeriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {p : FormalMultilinearSeries ๐•œ E F} {f : E โ†’ F} {x : E} {r : ENNReal} (h : HasFPowerSeriesOnBall f p x r) [CompleteSpace F] [CharZero ๐•œ] {y : E} (hy : y โˆˆ EMetric.ball 0 r) :
HasSum (fun (n : โ„•) => (โ†‘n.factorial)โปยน โ€ข (iteratedFDeriv ๐•œ n f x) fun (x : Fin n) => y) (f (x + y))