Invariance of the derivative under translation #
We show that if a function h
has derivative h'
at a point a + x
, then h (a + ยท)
has derivative h'
at x
. Similarly for x + a
.
theorem
HasDerivAt.comp_const_add
{๐ : Type u_1}
[NontriviallyNormedField ๐]
(a : ๐)
(x : ๐)
{๐' : Type u_2}
[NormedAddCommGroup ๐']
[NormedSpace ๐ ๐']
{h : ๐ โ ๐'}
{h' : ๐'}
(hh : HasDerivAt h h' (a + x))
:
HasDerivAt (fun (x : ๐) => h (a + x)) h' x
Translation in the domain does not change the derivative.
theorem
HasDerivAt.comp_add_const
{๐ : Type u_1}
[NontriviallyNormedField ๐]
(x : ๐)
(a : ๐)
{๐' : Type u_2}
[NormedAddCommGroup ๐']
[NormedSpace ๐ ๐']
{h : ๐ โ ๐'}
{h' : ๐'}
(hh : HasDerivAt h h' (x + a))
:
HasDerivAt (fun (x : ๐) => h (x + a)) h' x
Translation in the domain does not change the derivative.
theorem
deriv_comp_neg
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{F : Type u_2}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : ๐ โ F)
(a : ๐)
:
The derivative of x โฆ f (-x)
at a
is the negative of the derivative of f
at -a
.
theorem
deriv_comp_const_add
{๐ : Type u_1}
[NontriviallyNormedField ๐]
(a : ๐)
(x : ๐)
{๐' : Type u_2}
[NormedAddCommGroup ๐']
[NormedSpace ๐ ๐']
{h : ๐ โ ๐'}
(hh : DifferentiableAt ๐ h (a + x))
:
Translation in the domain does not change the derivative.
theorem
deriv_comp_add_const
{๐ : Type u_1}
[NontriviallyNormedField ๐]
(a : ๐)
(x : ๐)
{๐' : Type u_2}
[NormedAddCommGroup ๐']
[NormedSpace ๐ ๐']
{h : ๐ โ ๐'}
(hh : DifferentiableAt ๐ h (x + a))
:
Translation in the domain does not change the derivative.