Rings and Fin
#
This file collects some basic results involving rings and the Fin
type
Main results #
RingEquiv.piFinTwo
: The product overFin 2
of some rings is the cartesian product
@[simp]
theorem
RingEquiv.piFinTwo_symm_apply
(R : Fin 2 → Type u_1)
[(i : Fin 2) → Semiring (R i)]
:
∀ (a : R 0 × R 1) (i : Fin 2), (RingEquiv.piFinTwo R).symm a i = (piFinTwoEquiv R).invFun a i
@[simp]
theorem
RingEquiv.piFinTwo_apply
(R : Fin 2 → Type u_1)
[(i : Fin 2) → Semiring (R i)]
(a : (i : Fin 2) → R i)
:
(RingEquiv.piFinTwo R) a = (piFinTwoEquiv R) a
The product over Fin 2
of some rings is just the cartesian product of these rings.
Equations
- RingEquiv.piFinTwo R = let __src := piFinTwoEquiv R; { toFun := ⇑(piFinTwoEquiv R), invFun := __src.invFun, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯ }