Documentation

Mathlib.Algebra.Polynomial.Coeff

Theory of univariate polynomials #

The theorems include formulas for computing coefficients, such as coeff_add, coeff_sum, coeff_mul

@[simp]
theorem Polynomial.coeff_add {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) (n : ) :
(p + q).coeff n = p.coeff n + q.coeff n
@[simp]
theorem Polynomial.coeff_bit0 {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
(bit0 p).coeff n = bit0 (p.coeff n)
@[simp]
theorem Polynomial.coeff_smul {R : Type u} {S : Type v} [Semiring R] [SMulZeroClass S R] (r : S) (p : Polynomial R) (n : ) :
(r p).coeff n = r p.coeff n
theorem Polynomial.support_smul {R : Type u} {S : Type v} [Semiring R] [SMulZeroClass S R] (r : S) (p : Polynomial R) :
(r p).support p.support
theorem Polynomial.card_support_mul_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} :
(p * q).support.card p.support.card * q.support.card
@[simp]
theorem Polynomial.lsum_apply {R : Type u_1} {A : Type u_2} {M : Type u_3} [Semiring R] [Semiring A] [AddCommMonoid M] [Module R A] [Module R M] (f : A →ₗ[R] M) (p : Polynomial A) :
(Polynomial.lsum f) p = p.sum fun (x : ) (x_1 : A) => (f x) x_1
def Polynomial.lsum {R : Type u_1} {A : Type u_2} {M : Type u_3} [Semiring R] [Semiring A] [AddCommMonoid M] [Module R A] [Module R M] (f : A →ₗ[R] M) :

Polynomial.sum as a linear map.

Equations
Instances For

    The nth coefficient, as a linear map.

    Equations
    Instances For
      @[simp]
      theorem Polynomial.lcoeff_apply {R : Type u} [Semiring R] (n : ) (f : Polynomial R) :
      (Polynomial.lcoeff R n) f = f.coeff n
      @[simp]
      theorem Polynomial.finset_sum_coeff {R : Type u} [Semiring R] {ι : Type u_1} (s : Finset ι) (f : ιPolynomial R) (n : ) :
      (s.sum fun (b : ι) => f b).coeff n = s.sum fun (b : ι) => (f b).coeff n
      theorem Polynomial.coeff_sum {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (n : ) (f : RPolynomial S) :
      (p.sum f).coeff n = p.sum fun (a : ) (b : R) => (f a b).coeff n
      theorem Polynomial.coeff_mul {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) (n : ) :
      (p * q).coeff n = (Finset.antidiagonal n).sum fun (x : × ) => p.coeff x.1 * q.coeff x.2

      Decomposes the coefficient of the product p * q as a sum over antidiagonal. A version which sums over range (n + 1) can be obtained by using Finset.Nat.sum_antidiagonal_eq_sum_range_succ.

      @[simp]
      theorem Polynomial.mul_coeff_zero {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) :
      (p * q).coeff 0 = p.coeff 0 * q.coeff 0
      @[simp]
      theorem Polynomial.constantCoeff_apply {R : Type u} [Semiring R] (p : Polynomial R) :
      Polynomial.constantCoeff p = p.coeff 0

      constantCoeff p returns the constant term of the polynomial p, defined as coeff p 0. This is a ring homomorphism.

      Equations
      • Polynomial.constantCoeff = { toFun := fun (p : Polynomial R) => p.coeff 0, map_one' := , map_mul' := , map_zero' := , map_add' := }
      Instances For
        theorem Polynomial.isUnit_C {R : Type u} [Semiring R] {x : R} :
        IsUnit (Polynomial.C x) IsUnit x
        theorem Polynomial.coeff_mul_X_zero {R : Type u} [Semiring R] (p : Polynomial R) :
        (p * Polynomial.X).coeff 0 = 0
        theorem Polynomial.coeff_X_mul_zero {R : Type u} [Semiring R] (p : Polynomial R) :
        (Polynomial.X * p).coeff 0 = 0
        theorem Polynomial.coeff_C_mul_X_pow {R : Type u} [Semiring R] (x : R) (k : ) (n : ) :
        (Polynomial.C x * Polynomial.X ^ k).coeff n = if n = k then x else 0
        theorem Polynomial.coeff_C_mul_X {R : Type u} [Semiring R] (x : R) (n : ) :
        (Polynomial.C x * Polynomial.X).coeff n = if n = 1 then x else 0
        @[simp]
        theorem Polynomial.coeff_C_mul {R : Type u} {a : R} {n : } [Semiring R] (p : Polynomial R) :
        (Polynomial.C a * p).coeff n = a * p.coeff n
        theorem Polynomial.C_mul' {R : Type u} [Semiring R] (a : R) (f : Polynomial R) :
        Polynomial.C a * f = a f
        @[simp]
        theorem Polynomial.coeff_mul_C {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (a : R) :
        (p * Polynomial.C a).coeff n = p.coeff n * a
        @[simp]
        theorem Polynomial.coeff_mul_natCast {R : Type u} [Semiring R] {p : Polynomial R} {a : } {k : } :
        (p * a).coeff k = p.coeff k * a
        @[simp]
        theorem Polynomial.coeff_natCast_mul {R : Type u} [Semiring R] {p : Polynomial R} {a : } {k : } :
        (a * p).coeff k = a * p.coeff k
        @[simp]
        theorem Polynomial.coeff_mul_ofNat {R : Type u} [Semiring R] {p : Polynomial R} {a : } {k : } [a.AtLeastTwo] :
        (p * OfNat.ofNat a).coeff k = p.coeff k * OfNat.ofNat a
        @[simp]
        theorem Polynomial.coeff_ofNat_mul {R : Type u} [Semiring R] {p : Polynomial R} {a : } {k : } [a.AtLeastTwo] :
        (OfNat.ofNat a * p).coeff k = OfNat.ofNat a * p.coeff k
        @[simp]
        theorem Polynomial.coeff_mul_intCast {S : Type v} [Ring S] {p : Polynomial S} {a : } {k : } :
        (p * a).coeff k = p.coeff k * a
        @[simp]
        theorem Polynomial.coeff_intCast_mul {S : Type v} [Ring S] {p : Polynomial S} {a : } {k : } :
        (a * p).coeff k = a * p.coeff k
        @[simp]
        theorem Polynomial.coeff_X_pow {R : Type u} [Semiring R] (k : ) (n : ) :
        (Polynomial.X ^ k).coeff n = if n = k then 1 else 0
        theorem Polynomial.coeff_X_pow_self {R : Type u} [Semiring R] (n : ) :
        (Polynomial.X ^ n).coeff n = 1
        theorem Polynomial.support_binomial {R : Type u} [Semiring R] {k : } {m : } (hkm : k m) {x : R} {y : R} (hx : x 0) (hy : y 0) :
        (Polynomial.C x * Polynomial.X ^ k + Polynomial.C y * Polynomial.X ^ m).support = {k, m}
        theorem Polynomial.support_trinomial {R : Type u} [Semiring R] {k : } {m : } {n : } (hkm : k < m) (hmn : m < n) {x : R} {y : R} {z : R} (hx : x 0) (hy : y 0) (hz : z 0) :
        (Polynomial.C x * Polynomial.X ^ k + Polynomial.C y * Polynomial.X ^ m + Polynomial.C z * Polynomial.X ^ n).support = {k, m, n}
        theorem Polynomial.card_support_binomial {R : Type u} [Semiring R] {k : } {m : } (h : k m) {x : R} {y : R} (hx : x 0) (hy : y 0) :
        (Polynomial.C x * Polynomial.X ^ k + Polynomial.C y * Polynomial.X ^ m).support.card = 2
        theorem Polynomial.card_support_trinomial {R : Type u} [Semiring R] {k : } {m : } {n : } (hkm : k < m) (hmn : m < n) {x : R} {y : R} {z : R} (hx : x 0) (hy : y 0) (hz : z 0) :
        (Polynomial.C x * Polynomial.X ^ k + Polynomial.C y * Polynomial.X ^ m + Polynomial.C z * Polynomial.X ^ n).support.card = 3
        @[simp]
        theorem Polynomial.coeff_mul_X_pow {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (d : ) :
        (p * Polynomial.X ^ n).coeff (d + n) = p.coeff d
        @[simp]
        theorem Polynomial.coeff_X_pow_mul {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (d : ) :
        (Polynomial.X ^ n * p).coeff (d + n) = p.coeff d
        theorem Polynomial.coeff_mul_X_pow' {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (d : ) :
        (p * Polynomial.X ^ n).coeff d = if n d then p.coeff (d - n) else 0
        theorem Polynomial.coeff_X_pow_mul' {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (d : ) :
        (Polynomial.X ^ n * p).coeff d = if n d then p.coeff (d - n) else 0
        @[simp]
        theorem Polynomial.coeff_mul_X {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
        (p * Polynomial.X).coeff (n + 1) = p.coeff n
        @[simp]
        theorem Polynomial.coeff_X_mul {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
        (Polynomial.X * p).coeff (n + 1) = p.coeff n
        theorem Polynomial.coeff_mul_monomial {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (d : ) (r : R) :
        (p * (Polynomial.monomial n) r).coeff (d + n) = p.coeff d * r
        theorem Polynomial.coeff_monomial_mul {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (d : ) (r : R) :
        ((Polynomial.monomial n) r * p).coeff (d + n) = r * p.coeff d
        theorem Polynomial.coeff_mul_monomial_zero {R : Type u} [Semiring R] (p : Polynomial R) (d : ) (r : R) :
        (p * (Polynomial.monomial 0) r).coeff d = p.coeff d * r
        theorem Polynomial.coeff_monomial_zero_mul {R : Type u} [Semiring R] (p : Polynomial R) (d : ) (r : R) :
        ((Polynomial.monomial 0) r * p).coeff d = r * p.coeff d
        theorem Polynomial.mul_X_pow_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} {n : } (H : p * Polynomial.X ^ n = 0) :
        p = 0
        theorem Polynomial.isRegular_X_pow {R : Type u} [Semiring R] (n : ) :
        IsRegular (Polynomial.X ^ n)
        @[simp]
        theorem Polynomial.isRegular_X {R : Type u} [Semiring R] :
        IsRegular Polynomial.X
        theorem Polynomial.coeff_X_add_C_pow {R : Type u} [Semiring R] (r : R) (n : ) (k : ) :
        ((Polynomial.X + Polynomial.C r) ^ n).coeff k = r ^ (n - k) * (n.choose k)
        theorem Polynomial.coeff_X_add_one_pow (R : Type u_1) [Semiring R] (n : ) (k : ) :
        ((Polynomial.X + 1) ^ n).coeff k = (n.choose k)
        theorem Polynomial.coeff_one_add_X_pow (R : Type u_1) [Semiring R] (n : ) (k : ) :
        ((1 + Polynomial.X) ^ n).coeff k = (n.choose k)
        theorem Polynomial.C_dvd_iff_dvd_coeff {R : Type u} [Semiring R] (r : R) (φ : Polynomial R) :
        Polynomial.C r φ ∀ (i : ), r φ.coeff i
        theorem Polynomial.coeff_bit0_mul {R : Type u} [Semiring R] (P : Polynomial R) (Q : Polynomial R) (n : ) :
        (bit0 P * Q).coeff n = 2 * (P * Q).coeff n
        theorem Polynomial.coeff_bit1_mul {R : Type u} [Semiring R] (P : Polynomial R) (Q : Polynomial R) (n : ) :
        (bit1 P * Q).coeff n = 2 * (P * Q).coeff n + Q.coeff n
        theorem Polynomial.smul_eq_C_mul {R : Type u} [Semiring R] {p : Polynomial R} (a : R) :
        a p = Polynomial.C a * p
        theorem Polynomial.update_eq_add_sub_coeff {R : Type u_1} [Ring R] (p : Polynomial R) (n : ) (a : R) :
        p.update n a = p + Polynomial.C (a - p.coeff n) * Polynomial.X ^ n
        theorem Polynomial.natCast_coeff_zero {n : } {R : Type u_1} [Semiring R] :
        (n).coeff 0 = n
        theorem Polynomial.natCast_inj {m : } {n : } {R : Type u_1} [Semiring R] [CharZero R] :
        m = n m = n
        @[simp]
        theorem Polynomial.intCast_coeff_zero {i : } {R : Type u_1} [Ring R] :
        (i).coeff 0 = i
        theorem Polynomial.intCast_inj {m : } {n : } {R : Type u_1} [Ring R] [CharZero R] :
        m = n m = n
        Equations
        • =