Finite sums over modules over a ring #
theorem
Multiset.sum_smul
{R : Type u_5}
{M : Type u_6}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{l : Multiset R}
{x : M}
:
l.sum • x = (Multiset.map (fun (r : R) => r • x) l).sum
theorem
Multiset.sum_smul_sum
{R : Type u_5}
{M : Type u_6}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{s : Multiset R}
{t : Multiset M}
:
theorem
Finset.cast_card
{α : Type u_3}
{R : Type u_5}
[CommSemiring R]
(s : Finset α)
:
↑s.card = ∑ a ∈ s, 1
theorem
Fintype.sum_piFinset_apply
{ι : Type u_1}
{κ : Type u_2}
{α : Type u_3}
[DecidableEq ι]
[Fintype ι]
[AddCommMonoid α]
(f : κ → α)
(s : Finset κ)
(i : ι)
:
∑ g ∈ Fintype.piFinset fun (x : ι) => s, f (g i) = s.card ^ (Fintype.card ι - 1) • ∑ b ∈ s, f b