Indicator functions and support of a function in groups with zero #
theorem
Set.indicator_mul
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroClass M₀]
(s : Set ι)
(f : ι → M₀)
(g : ι → M₀)
:
theorem
Set.indicator_mul_left
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroClass M₀]
{i : ι}
(s : Set ι)
(f : ι → M₀)
(g : ι → M₀)
:
theorem
Set.indicator_mul_right
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroClass M₀]
{i : ι}
(s : Set ι)
(f : ι → M₀)
(g : ι → M₀)
:
theorem
Set.inter_indicator_one
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroOneClass M₀]
{s : Set ι}
{t : Set ι}
:
theorem
Set.indicator_eq_zero_iff_not_mem
{ι : Type u_1}
(M₀ : Type u_4)
[MulZeroOneClass M₀]
{s : Set ι}
{i : ι}
[Nontrivial M₀]
:
theorem
Set.indicator_eq_one_iff_mem
{ι : Type u_1}
(M₀ : Type u_4)
[MulZeroOneClass M₀]
{s : Set ι}
{i : ι}
[Nontrivial M₀]
:
theorem
Set.indicator_one_inj
{ι : Type u_1}
(M₀ : Type u_4)
[MulZeroOneClass M₀]
{s : Set ι}
{t : Set ι}
[Nontrivial M₀]
(h : s.indicator 1 = t.indicator 1)
:
s = t
@[simp]
theorem
Function.support_one
{ι : Type u_1}
(R : Type u_5)
[Zero R]
[One R]
[NeZero 1]
:
Function.support 1 = Set.univ
@[simp]
theorem
Function.mulSupport_zero
{ι : Type u_1}
(R : Type u_5)
[Zero R]
[One R]
[NeZero 1]
:
Function.mulSupport 0 = Set.univ
theorem
Function.support_mul_subset_left
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroClass M₀]
(f : ι → M₀)
(g : ι → M₀)
:
(Function.support fun (x : ι) => f x * g x) ⊆ Function.support f
theorem
Function.support_mul_subset_right
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroClass M₀]
(f : ι → M₀)
(g : ι → M₀)
:
(Function.support fun (x : ι) => f x * g x) ⊆ Function.support g
@[simp]
theorem
Function.support_mul
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroClass M₀]
[NoZeroDivisors M₀]
(f : ι → M₀)
(g : ι → M₀)
:
(Function.support fun (x : ι) => f x * g x) = Function.support f ∩ Function.support g
@[simp]
theorem
Function.support_mul'
{ι : Type u_1}
{M₀ : Type u_4}
[MulZeroClass M₀]
[NoZeroDivisors M₀]
(f : ι → M₀)
(g : ι → M₀)
:
Function.support (f * g) = Function.support f ∩ Function.support g
@[simp]
theorem
Function.support_pow
{ι : Type u_1}
{M₀ : Type u_4}
[MonoidWithZero M₀]
[NoZeroDivisors M₀]
{n : ℕ}
(f : ι → M₀)
(hn : n ≠ 0)
:
(Function.support fun (a : ι) => f a ^ n) = Function.support f
@[simp]
theorem
Function.support_pow'
{ι : Type u_1}
{M₀ : Type u_4}
[MonoidWithZero M₀]
[NoZeroDivisors M₀]
{n : ℕ}
(f : ι → M₀)
(hn : n ≠ 0)
:
Function.support (f ^ n) = Function.support f
@[simp]
theorem
Function.support_inv
{ι : Type u_1}
{G₀ : Type u_3}
[GroupWithZero G₀]
(f : ι → G₀)
:
(Function.support fun (a : ι) => (f a)⁻¹) = Function.support f
@[simp]
@[simp]
theorem
Function.support_div
{ι : Type u_1}
{G₀ : Type u_3}
[GroupWithZero G₀]
(f : ι → G₀)
(g : ι → G₀)
:
(Function.support fun (a : ι) => f a / g a) = Function.support f ∩ Function.support g
@[simp]
theorem
Function.support_div'
{ι : Type u_1}
{G₀ : Type u_3}
[GroupWithZero G₀]
(f : ι → G₀)
(g : ι → G₀)
:
Function.support (f / g) = Function.support f ∩ Function.support g
theorem
Function.mulSupport_one_add
{ι : Type u_1}
{R : Type u_5}
[One R]
[AddLeftCancelMonoid R]
(f : ι → R)
:
(Function.mulSupport fun (x : ι) => 1 + f x) = Function.support f
theorem
Function.mulSupport_one_add'
{ι : Type u_1}
{R : Type u_5}
[One R]
[AddLeftCancelMonoid R]
(f : ι → R)
:
Function.mulSupport (1 + f) = Function.support f
theorem
Function.mulSupport_add_one
{ι : Type u_1}
{R : Type u_5}
[One R]
[AddRightCancelMonoid R]
(f : ι → R)
:
(Function.mulSupport fun (x : ι) => f x + 1) = Function.support f
theorem
Function.mulSupport_add_one'
{ι : Type u_1}
{R : Type u_5}
[One R]
[AddRightCancelMonoid R]
(f : ι → R)
:
Function.mulSupport (f + 1) = Function.support f
theorem
Function.mulSupport_one_sub'
{ι : Type u_1}
{R : Type u_5}
[One R]
[AddGroup R]
(f : ι → R)
:
Function.mulSupport (1 - f) = Function.support f
theorem
Function.mulSupport_one_sub
{ι : Type u_1}
{R : Type u_5}
[One R]
[AddGroup R]
(f : ι → R)
:
(Function.mulSupport fun (x : ι) => 1 - f x) = Function.support f