Documentation

Mathlib.Algebra.Group.Subgroup.MulOpposite

Mul-opposite subgroups #

Tags #

subgroup, subgroups

Pull an additive subgroup back to an opposite additive subgroup along AddOpposite.unop

Equations
  • H.op = { carrier := AddOpposite.unop ⁻¹' H, add_mem' := , zero_mem' := , neg_mem' := }
Instances For
    theorem AddSubgroup.op.proof_1 {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
    ∀ {a b : Gᵃᵒᵖ}, a AddOpposite.unop ⁻¹' Hb AddOpposite.unop ⁻¹' Hb.unop + a.unop H
    theorem AddSubgroup.op.proof_2 {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
    ∀ {x : Gᵃᵒᵖ}, x.unop H-x.unop H
    @[simp]
    theorem AddSubgroup.op_coe {G : Type u_2} [AddGroup G] (H : AddSubgroup G) :
    H.op = AddOpposite.unop ⁻¹' H
    @[simp]
    theorem Subgroup.op_coe {G : Type u_2} [Group G] (H : Subgroup G) :
    H.op = MulOpposite.unop ⁻¹' H
    def Subgroup.op {G : Type u_2} [Group G] (H : Subgroup G) :

    Pull a subgroup back to an opposite subgroup along MulOpposite.unop

    Equations
    • H.op = { carrier := MulOpposite.unop ⁻¹' H, mul_mem' := , one_mem' := , inv_mem' := }
    Instances For
      @[simp]
      theorem AddSubgroup.mem_op {G : Type u_2} [AddGroup G] {x : Gᵃᵒᵖ} {S : AddSubgroup G} :
      x S.op x.unop S
      @[simp]
      theorem Subgroup.mem_op {G : Type u_2} [Group G] {x : Gᵐᵒᵖ} {S : Subgroup G} :
      x S.op x.unop S
      @[simp]
      theorem AddSubgroup.op_toAddSubmonoid {G : Type u_2} [AddGroup G] (H : AddSubgroup G) :
      H.op.toAddSubmonoid = H.op
      @[simp]
      theorem Subgroup.op_toSubmonoid {G : Type u_2} [Group G] (H : Subgroup G) :
      H.op.toSubmonoid = H.op

      Pull an opposite additive subgroup back to an additive subgroup along AddOpposite.op

      Equations
      • H.unop = { carrier := AddOpposite.op ⁻¹' H, add_mem' := , zero_mem' := , neg_mem' := }
      Instances For
        theorem AddSubgroup.unop.proof_1 {G : Type u_1} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
        ∀ {a b : G}, a AddOpposite.op ⁻¹' Hb AddOpposite.op ⁻¹' H{ unop' := b } + { unop' := a } H
        @[simp]
        theorem AddSubgroup.unop_coe {G : Type u_2} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
        H.unop = AddOpposite.op ⁻¹' H
        @[simp]
        theorem Subgroup.unop_coe {G : Type u_2} [Group G] (H : Subgroup Gᵐᵒᵖ) :
        H.unop = MulOpposite.op ⁻¹' H
        def Subgroup.unop {G : Type u_2} [Group G] (H : Subgroup Gᵐᵒᵖ) :

        Pull an opposite subgroup back to a subgroup along MulOpposite.op

        Equations
        • H.unop = { carrier := MulOpposite.op ⁻¹' H, mul_mem' := , one_mem' := , inv_mem' := }
        Instances For
          @[simp]
          theorem AddSubgroup.mem_unop {G : Type u_2} [AddGroup G] {x : G} {S : AddSubgroup Gᵃᵒᵖ} :
          x S.unop AddOpposite.op x S
          @[simp]
          theorem Subgroup.mem_unop {G : Type u_2} [Group G] {x : G} {S : Subgroup Gᵐᵒᵖ} :
          x S.unop MulOpposite.op x S
          @[simp]
          theorem AddSubgroup.unop_toAddSubmonoid {G : Type u_2} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
          H.unop.toAddSubmonoid = H.unop
          @[simp]
          theorem Subgroup.unop_toSubmonoid {G : Type u_2} [Group G] (H : Subgroup Gᵐᵒᵖ) :
          H.unop.toSubmonoid = H.unop
          @[simp]
          theorem AddSubgroup.unop_op {G : Type u_2} [AddGroup G] (S : AddSubgroup G) :
          S.op.unop = S
          @[simp]
          theorem Subgroup.unop_op {G : Type u_2} [Group G] (S : Subgroup G) :
          S.op.unop = S
          @[simp]
          theorem AddSubgroup.op_unop {G : Type u_2} [AddGroup G] (S : AddSubgroup Gᵃᵒᵖ) :
          S.unop.op = S
          @[simp]
          theorem Subgroup.op_unop {G : Type u_2} [Group G] (S : Subgroup Gᵐᵒᵖ) :
          S.unop.op = S

          Lattice results #

          theorem AddSubgroup.op_le_iff {G : Type u_2} [AddGroup G] {S₁ : AddSubgroup G} {S₂ : AddSubgroup Gᵃᵒᵖ} :
          S₁.op S₂ S₁ S₂.unop
          theorem Subgroup.op_le_iff {G : Type u_2} [Group G] {S₁ : Subgroup G} {S₂ : Subgroup Gᵐᵒᵖ} :
          S₁.op S₂ S₁ S₂.unop
          theorem AddSubgroup.le_op_iff {G : Type u_2} [AddGroup G] {S₁ : AddSubgroup Gᵃᵒᵖ} {S₂ : AddSubgroup G} :
          S₁ S₂.op S₁.unop S₂
          theorem Subgroup.le_op_iff {G : Type u_2} [Group G] {S₁ : Subgroup Gᵐᵒᵖ} {S₂ : Subgroup G} :
          S₁ S₂.op S₁.unop S₂
          @[simp]
          theorem AddSubgroup.op_le_op_iff {G : Type u_2} [AddGroup G] {S₁ : AddSubgroup G} {S₂ : AddSubgroup G} :
          S₁.op S₂.op S₁ S₂
          @[simp]
          theorem Subgroup.op_le_op_iff {G : Type u_2} [Group G] {S₁ : Subgroup G} {S₂ : Subgroup G} :
          S₁.op S₂.op S₁ S₂
          @[simp]
          theorem AddSubgroup.unop_le_unop_iff {G : Type u_2} [AddGroup G] {S₁ : AddSubgroup Gᵃᵒᵖ} {S₂ : AddSubgroup Gᵃᵒᵖ} :
          S₁.unop S₂.unop S₁ S₂
          @[simp]
          theorem Subgroup.unop_le_unop_iff {G : Type u_2} [Group G] {S₁ : Subgroup Gᵐᵒᵖ} {S₂ : Subgroup Gᵐᵒᵖ} :
          S₁.unop S₂.unop S₁ S₂

          An additive subgroup H of G determines an additive subgroup H.op of the opposite additive group Gᵃᵒᵖ.

          Equations
          • AddSubgroup.opEquiv = { toFun := AddSubgroup.op, invFun := AddSubgroup.unop, left_inv := , right_inv := , map_rel_iff' := }
          Instances For
            @[simp]
            theorem AddSubgroup.opEquiv_apply {G : Type u_2} [AddGroup G] (H : AddSubgroup G) :
            AddSubgroup.opEquiv H = H.op
            @[simp]
            theorem Subgroup.opEquiv_apply {G : Type u_2} [Group G] (H : Subgroup G) :
            Subgroup.opEquiv H = H.op
            @[simp]
            theorem Subgroup.opEquiv_symm_apply {G : Type u_2} [Group G] (H : Subgroup Gᵐᵒᵖ) :
            (RelIso.symm Subgroup.opEquiv) H = H.unop
            @[simp]
            theorem AddSubgroup.opEquiv_symm_apply {G : Type u_2} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) :
            (RelIso.symm AddSubgroup.opEquiv) H = H.unop

            A subgroup H of G determines a subgroup H.op of the opposite group Gᵐᵒᵖ.

            Equations
            • Subgroup.opEquiv = { toFun := Subgroup.op, invFun := Subgroup.unop, left_inv := , right_inv := , map_rel_iff' := }
            Instances For
              @[simp]
              theorem AddSubgroup.op_bot {G : Type u_2} [AddGroup G] :
              .op =
              @[simp]
              theorem Subgroup.op_bot {G : Type u_2} [Group G] :
              .op =
              @[simp]
              theorem AddSubgroup.unop_bot {G : Type u_2} [AddGroup G] :
              .unop =
              @[simp]
              theorem Subgroup.unop_bot {G : Type u_2} [Group G] :
              .unop =
              @[simp]
              theorem AddSubgroup.op_top {G : Type u_2} [AddGroup G] :
              .op =
              @[simp]
              theorem Subgroup.op_top {G : Type u_2} [Group G] :
              .op =
              @[simp]
              theorem AddSubgroup.unop_top {G : Type u_2} [AddGroup G] :
              .unop =
              @[simp]
              theorem Subgroup.unop_top {G : Type u_2} [Group G] :
              .unop =
              theorem AddSubgroup.op_sup {G : Type u_2} [AddGroup G] (S₁ : AddSubgroup G) (S₂ : AddSubgroup G) :
              (S₁ S₂).op = S₁.op S₂.op
              theorem Subgroup.op_sup {G : Type u_2} [Group G] (S₁ : Subgroup G) (S₂ : Subgroup G) :
              (S₁ S₂).op = S₁.op S₂.op
              theorem AddSubgroup.unop_sup {G : Type u_2} [AddGroup G] (S₁ : AddSubgroup Gᵃᵒᵖ) (S₂ : AddSubgroup Gᵃᵒᵖ) :
              (S₁ S₂).unop = S₁.unop S₂.unop
              theorem Subgroup.unop_sup {G : Type u_2} [Group G] (S₁ : Subgroup Gᵐᵒᵖ) (S₂ : Subgroup Gᵐᵒᵖ) :
              (S₁ S₂).unop = S₁.unop S₂.unop
              theorem AddSubgroup.op_inf {G : Type u_2} [AddGroup G] (S₁ : AddSubgroup G) (S₂ : AddSubgroup G) :
              (S₁ S₂).op = S₁.op S₂.op
              theorem Subgroup.op_inf {G : Type u_2} [Group G] (S₁ : Subgroup G) (S₂ : Subgroup G) :
              (S₁ S₂).op = S₁.op S₂.op
              theorem AddSubgroup.unop_inf {G : Type u_2} [AddGroup G] (S₁ : AddSubgroup Gᵃᵒᵖ) (S₂ : AddSubgroup Gᵃᵒᵖ) :
              (S₁ S₂).unop = S₁.unop S₂.unop
              theorem Subgroup.unop_inf {G : Type u_2} [Group G] (S₁ : Subgroup Gᵐᵒᵖ) (S₂ : Subgroup Gᵐᵒᵖ) :
              (S₁ S₂).unop = S₁.unop S₂.unop
              theorem AddSubgroup.op_sSup {G : Type u_2} [AddGroup G] (S : Set (AddSubgroup G)) :
              (sSup S).op = sSup (AddSubgroup.unop ⁻¹' S)
              theorem Subgroup.op_sSup {G : Type u_2} [Group G] (S : Set (Subgroup G)) :
              (sSup S).op = sSup (Subgroup.unop ⁻¹' S)
              theorem AddSubgroup.unop_sSup {G : Type u_2} [AddGroup G] (S : Set (AddSubgroup Gᵃᵒᵖ)) :
              (sSup S).unop = sSup (AddSubgroup.op ⁻¹' S)
              theorem Subgroup.unop_sSup {G : Type u_2} [Group G] (S : Set (Subgroup Gᵐᵒᵖ)) :
              (sSup S).unop = sSup (Subgroup.op ⁻¹' S)
              theorem AddSubgroup.op_sInf {G : Type u_2} [AddGroup G] (S : Set (AddSubgroup G)) :
              (sInf S).op = sInf (AddSubgroup.unop ⁻¹' S)
              theorem Subgroup.op_sInf {G : Type u_2} [Group G] (S : Set (Subgroup G)) :
              (sInf S).op = sInf (Subgroup.unop ⁻¹' S)
              theorem AddSubgroup.unop_sInf {G : Type u_2} [AddGroup G] (S : Set (AddSubgroup Gᵃᵒᵖ)) :
              (sInf S).unop = sInf (AddSubgroup.op ⁻¹' S)
              theorem Subgroup.unop_sInf {G : Type u_2} [Group G] (S : Set (Subgroup Gᵐᵒᵖ)) :
              (sInf S).unop = sInf (Subgroup.op ⁻¹' S)
              theorem AddSubgroup.op_iSup {ι : Sort u_1} {G : Type u_2} [AddGroup G] (S : ιAddSubgroup G) :
              (iSup S).op = ⨆ (i : ι), (S i).op
              theorem Subgroup.op_iSup {ι : Sort u_1} {G : Type u_2} [Group G] (S : ιSubgroup G) :
              (iSup S).op = ⨆ (i : ι), (S i).op
              theorem AddSubgroup.unop_iSup {ι : Sort u_1} {G : Type u_2} [AddGroup G] (S : ιAddSubgroup Gᵃᵒᵖ) :
              (iSup S).unop = ⨆ (i : ι), (S i).unop
              theorem Subgroup.unop_iSup {ι : Sort u_1} {G : Type u_2} [Group G] (S : ιSubgroup Gᵐᵒᵖ) :
              (iSup S).unop = ⨆ (i : ι), (S i).unop
              theorem AddSubgroup.op_iInf {ι : Sort u_1} {G : Type u_2} [AddGroup G] (S : ιAddSubgroup G) :
              (iInf S).op = ⨅ (i : ι), (S i).op
              theorem Subgroup.op_iInf {ι : Sort u_1} {G : Type u_2} [Group G] (S : ιSubgroup G) :
              (iInf S).op = ⨅ (i : ι), (S i).op
              theorem AddSubgroup.unop_iInf {ι : Sort u_1} {G : Type u_2} [AddGroup G] (S : ιAddSubgroup Gᵃᵒᵖ) :
              (iInf S).unop = ⨅ (i : ι), (S i).unop
              theorem Subgroup.unop_iInf {ι : Sort u_1} {G : Type u_2} [Group G] (S : ιSubgroup Gᵐᵒᵖ) :
              (iInf S).unop = ⨅ (i : ι), (S i).unop
              theorem AddSubgroup.op_closure {G : Type u_2} [AddGroup G] (s : Set G) :
              (AddSubgroup.closure s).op = AddSubgroup.closure (AddOpposite.unop ⁻¹' s)
              theorem Subgroup.op_closure {G : Type u_2} [Group G] (s : Set G) :
              (Subgroup.closure s).op = Subgroup.closure (MulOpposite.unop ⁻¹' s)
              theorem AddSubgroup.unop_closure {G : Type u_2} [AddGroup G] (s : Set Gᵃᵒᵖ) :
              (AddSubgroup.closure s).unop = AddSubgroup.closure (AddOpposite.op ⁻¹' s)
              theorem Subgroup.unop_closure {G : Type u_2} [Group G] (s : Set Gᵐᵒᵖ) :
              (Subgroup.closure s).unop = Subgroup.closure (MulOpposite.op ⁻¹' s)
              theorem AddSubgroup.equivOp.proof_1 {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              ∀ (x : G), x H x H
              def AddSubgroup.equivOp {G : Type u_2} [AddGroup G] (H : AddSubgroup G) :
              H H.op

              Bijection between an additive subgroup H and its opposite.

              Equations
              • H.equivOp = AddOpposite.opEquiv.subtypeEquiv
              Instances For
                @[simp]
                theorem AddSubgroup.equivOp_apply_coe {G : Type u_2} [AddGroup G] (H : AddSubgroup G) (a : { a : G // (fun (x : G) => x H) a }) :
                (H.equivOp a) = AddOpposite.op a
                @[simp]
                theorem AddSubgroup.equivOp_symm_apply_coe {G : Type u_2} [AddGroup G] (H : AddSubgroup G) (b : { b : Gᵃᵒᵖ // (fun (x : Gᵃᵒᵖ) => x H.op) b }) :
                (H.equivOp.symm b) = (b).unop
                @[simp]
                theorem Subgroup.equivOp_symm_apply_coe {G : Type u_2} [Group G] (H : Subgroup G) (b : { b : Gᵐᵒᵖ // (fun (x : Gᵐᵒᵖ) => x H.op) b }) :
                (H.equivOp.symm b) = (b).unop
                @[simp]
                theorem Subgroup.equivOp_apply_coe {G : Type u_2} [Group G] (H : Subgroup G) (a : { a : G // (fun (x : G) => x H) a }) :
                (H.equivOp a) = MulOpposite.op a
                def Subgroup.equivOp {G : Type u_2} [Group G] (H : Subgroup G) :
                H H.op

                Bijection between a subgroup H and its opposite.

                Equations
                • H.equivOp = MulOpposite.opEquiv.subtypeEquiv
                Instances For
                  Equations
                  Equations
                  Equations
                  • =
                  Equations
                  • =
                  theorem AddSubgroup.vadd_opposite_add {G : Type u_2} [AddGroup G] {H : AddSubgroup G} (x : G) (g : G) (h : H.op) :
                  h +ᵥ (g + x) = g + (h +ᵥ x)
                  theorem Subgroup.smul_opposite_mul {G : Type u_2} [Group G] {H : Subgroup G} (x : G) (g : G) (h : H.op) :
                  h (g * x) = g * h x