Centralizers of magmas and semigroups #
Main definitions #
Set.centralizer
: the centralizer of a subset of a magmaSet.addCentralizer
: the centralizer of a subset of an additive magma
See Mathlib.GroupTheory.Subsemigroup.Centralizer
for the definition of the centralizer
as a subsemigroup:
Subsemigroup.centralizer
: the centralizer of a subset of a semigroupAddSubsemigroup.centralizer
: the centralizer of a subset of an additive semigroup
We provide Monoid.centralizer
, AddMonoid.centralizer
, Subgroup.centralizer
, and
AddSubgroup.centralizer
in other files.
instance
Set.decidableMemAddCentralizer
{M : Type u_1}
{S : Set M}
[Add M]
[(a : M) → Decidable (∀ b ∈ S, b + a = a + b)]
:
DecidablePred fun (x : M) => x ∈ S.addCentralizer
Equations
- Set.decidableMemAddCentralizer x = decidable_of_iff' (∀ m ∈ S, m + x = x + m) ⋯
instance
Set.decidableMemCentralizer
{M : Type u_1}
{S : Set M}
[Mul M]
[(a : M) → Decidable (∀ b ∈ S, b * a = a * b)]
:
DecidablePred fun (x : M) => x ∈ S.centralizer
Equations
- Set.decidableMemCentralizer x = decidable_of_iff' (∀ m ∈ S, m * x = x * m) ⋯
@[simp]
theorem
Set.zero_mem_addCentralizer
{M : Type u_1}
(S : Set M)
[AddZeroClass M]
:
0 ∈ S.addCentralizer
@[simp]
@[simp]
@[simp]
theorem
Set.add_mem_addCentralizer
{M : Type u_1}
{S : Set M}
{a : M}
{b : M}
[AddSemigroup M]
(ha : a ∈ S.addCentralizer)
(hb : b ∈ S.addCentralizer)
:
@[simp]
theorem
Set.inv_mem_centralizer₀
{M : Type u_1}
{S : Set M}
{a : M}
[GroupWithZero M]
(ha : a ∈ S.centralizer)
:
@[simp]
theorem
Set.div_mem_centralizer₀
{M : Type u_1}
{S : Set M}
{a : M}
{b : M}
[GroupWithZero M]
(ha : a ∈ S.centralizer)
(hb : b ∈ S.centralizer)
:
theorem
Set.addCenter_subset_addCentralizer
{M : Type u_1}
[Add M]
(S : Set M)
:
Set.addCenter M ⊆ S.addCentralizer
theorem
Set.center_subset_centralizer
{M : Type u_1}
[Mul M]
(S : Set M)
:
Set.center M ⊆ S.centralizer
@[simp]
theorem
Set.addCentralizer_eq_top_iff_subset
{M : Type u_1}
{s : Set M}
[AddSemigroup M]
:
s.addCentralizer = Set.univ ↔ s ⊆ Set.addCenter M
@[simp]
theorem
Set.centralizer_eq_top_iff_subset
{M : Type u_1}
{s : Set M}
[Semigroup M]
:
s.centralizer = Set.univ ↔ s ⊆ Set.center M
@[simp]
theorem
Set.addCentralizer_univ
(M : Type u_1)
[AddSemigroup M]
:
Set.univ.addCentralizer = Set.addCenter M
@[simp]
@[simp]
theorem
Set.addCentralizer_eq_univ
{M : Type u_1}
(S : Set M)
[AddCommSemigroup M]
:
S.addCentralizer = Set.univ
@[simp]
theorem
Set.centralizer_eq_univ
{M : Type u_1}
(S : Set M)
[CommSemigroup M]
:
S.centralizer = Set.univ