- mvarId : Lean.MVarId
- subst : Lean.Meta.FVarSubst
- numNewEqs : Nat
Instances For
def
Lean.Meta.unifyEq?
(mvarId : Lean.MVarId)
(eqFVarId : Lean.FVarId)
(subst : optParam Lean.Meta.FVarSubst { map := ∅ })
(acyclic : optParam (Lean.MVarId → Lean.Expr → Lean.MetaM Bool) fun (x : Lean.MVarId) (x : Lean.Expr) => pure false)
(caseName? : optParam (Option Lake.Name) none)
:
Helper method for methods such as Cases.unifyEqs?.
Given the given goal mvarId containing the local hypothesis eqFVarId, it performs the following operations:
- If
eqFVarIdis a heterogeneous equality, tries to convert it to a homogeneous one. - If
eqFVarIdis a homogeneous equality of the forma = b, it tries- If
aandbare definitionally equal, clear it - Normalize
aandbusing the current reducibility setting. - If
a(b) is a free variable not occurring inb(a), replace it everywhere. - If
aandbare distinct constructors, returnnoneto indicate that the goal has been closed. - If
aandbare the same constructor, applyinjection, the result contains the number of new equalities introduced in the goal. - It also tries to apply the given
acyclicmethod to try to close the goal. Remark: It is a parameter becausesimpusesunifyEq?, andacyclicdepends onsimp.
- If
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Lean.Meta.unifyEq?.substEq
(mvarId : Lean.MVarId)
(eqFVarId : Lean.FVarId)
(subst : optParam Lean.Meta.FVarSubst { map := ∅ })
(acyclic : optParam (Lean.MVarId → Lean.Expr → Lean.MetaM Bool) fun (x : Lean.MVarId) (x : Lean.Expr) => pure false)
(eqDecl : Lean.LocalDecl)
(a : Lean.Expr)
(b : Lean.Expr)
(symm : Bool)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Lean.Meta.unifyEq?.injection
(mvarId : Lean.MVarId)
(eqFVarId : Lean.FVarId)
(subst : optParam Lean.Meta.FVarSubst { map := ∅ })
(caseName? : optParam (Option Lake.Name) none)
(eqDecl : Lean.LocalDecl)
(injectionOffset? : Lean.Expr → Lean.Expr → Lean.MetaM (Option Lean.MVarId))
(a : Lean.Expr)
(b : Lean.Expr)
:
Equations
- One or more equations did not get rendered due to their size.