def
Mathlib.Meta.NormNum.inferOrderedSemiring
{u : Lean.Level}
(α : Q(Type u))
:
Lean.MetaM ((x : Q(Semiring «$α»)) × (x_1 : Q(PartialOrder «$α»)) × Q(IsOrderedRing «$α»))
Helper function to synthesize typed Semiring α PartialOrder α IsOrderedSemiring α
expressions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Mathlib.Meta.NormNum.inferOrderedRing
{u : Lean.Level}
(α : Q(Type u))
:
Lean.MetaM ((x : Q(Ring «$α»)) × (x_1 : Q(PartialOrder «$α»)) × Q(IsOrderedRing «$α»))
Helper function to synthesize typed Ring α PartialOrder α IsOrderedSemiring α
expressions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Mathlib.Meta.NormNum.inferLinearOrderedSemifield
{u : Lean.Level}
(α : Q(Type u))
:
Lean.MetaM ((x : Q(Semifield «$α»)) × (x_1 : Q(LinearOrder «$α»)) × Q(IsStrictOrderedRing «$α»))
Helper function to synthesize typed Semifield α LinearOrder α IsStrictOrderedRing α
expressions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Mathlib.Meta.NormNum.inferLinearOrderedField
{u : Lean.Level}
(α : Q(Type u))
:
Lean.MetaM ((x : Q(Field «$α»)) × (x_1 : Q(LinearOrder «$α»)) × Q(IsStrictOrderedRing «$α»))
Helper function to synthesize typed Field α LinearOrder α IsStrictOrderedRing α
expressions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Mathlib.Meta.NormNum.isNat_le_true
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
{a b : α}
{a' b' : ℕ}
:
theorem
Mathlib.Meta.NormNum.isNat_lt_false
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
{a b : α}
{a' b' : ℕ}
(ha : IsNat a a')
(hb : IsNat b b')
(h : b'.ble a' = true)
:
theorem
Mathlib.Meta.NormNum.isNNRat_lt_true
{α : Type u_1}
[Semiring α]
[LinearOrder α]
[IsStrictOrderedRing α]
[Nontrivial α]
{a b : α}
{na nb da db : ℕ}
:
theorem
Mathlib.Meta.NormNum.isNNRat_le_false
{α : Type u_1}
[Semiring α]
[LinearOrder α]
[IsStrictOrderedRing α]
[Nontrivial α]
{a b : α}
{na nb da db : ℕ}
(ha : IsNNRat a na da)
(hb : IsNNRat b nb db)
(h : decide (nb * da < na * db) = true)
:
theorem
Mathlib.Meta.NormNum.isRat_lt_true
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
[Nontrivial α]
{a b : α}
{na nb : ℤ}
{da db : ℕ}
:
theorem
Mathlib.Meta.NormNum.isRat_le_false
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
[Nontrivial α]
{a b : α}
{na nb : ℤ}
{da db : ℕ}
(ha : IsRat a na da)
(hb : IsRat b nb db)
(h : decide (nb * ↑da < na * ↑db) = true)
:
(In)equalities #
theorem
Mathlib.Meta.NormNum.isNat_lt_true
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
[CharZero α]
{a b : α}
{a' b' : ℕ}
:
theorem
Mathlib.Meta.NormNum.isNat_le_false
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
[CharZero α]
{a b : α}
{a' b' : ℕ}
(ha : IsNat a a')
(hb : IsNat b b')
(h : a'.ble b' = false)
:
theorem
Mathlib.Meta.NormNum.isInt_le_true
{α : Type u_1}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
{a b : α}
{a' b' : ℤ}
:
theorem
Mathlib.Meta.NormNum.isInt_lt_true
{α : Type u_1}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
[Nontrivial α]
{a b : α}
{a' b' : ℤ}
:
theorem
Mathlib.Meta.NormNum.isInt_le_false
{α : Type u_1}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
[Nontrivial α]
{a b : α}
{a' b' : ℤ}
(ha : IsInt a a')
(hb : IsInt b b')
(h : decide (b' < a') = true)
:
theorem
Mathlib.Meta.NormNum.isInt_lt_false
{α : Type u_1}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
{a b : α}
{a' b' : ℤ}
(ha : IsInt a a')
(hb : IsInt b b')
(h : decide (b' ≤ a') = true)
: