Documentation

Cslib.Languages.LambdaCalculus.LocallyNameless.Untyped.FullBetaConfluence

β-confluence for the λ-calculus #

A parallel β-reduction step.

Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The left side of a parallel reduction is locally closed.

        Parallel reduction is reflexive for locally closed terms.

        theorem Cslib.LambdaCalculus.LocallyNameless.Untyped.Term.para_lc_r {Var : Type u} {M N : Term Var} [HasFresh Var] [DecidableEq Var] (step : paraRs.Red M N) :
        N.LC

        The right side of a parallel reduction is locally closed.

        A single β-reduction implies a single parallel reduction.

        A single parallel reduction implies a multiple β-reduction.

        Multiple parallel reduction is equivalent to multiple β-reduction.

        theorem Cslib.LambdaCalculus.LocallyNameless.Untyped.Term.para_subst {Var : Type u} {M M' N N' : Term Var} [HasFresh Var] [DecidableEq Var] (x : Var) (pm : paraRs.Red M M') (pn : paraRs.Red N N') :
        paraRs.Red (M[x:=N]) (M'[x:=N'])

        Parallel reduction respects substitution.

        theorem Cslib.LambdaCalculus.LocallyNameless.Untyped.Term.para_open_close {Var : Type u} {M M' : Term Var} [HasFresh Var] [DecidableEq Var] (x y : Var) (z : ) (para : paraRs.Red M M') :
        paraRs.Red (openRec z (fvar y) (closeRec z x M)) (openRec z (fvar y) (closeRec z x M'))

        Parallel substitution respects closing and opening.

        theorem Cslib.LambdaCalculus.LocallyNameless.Untyped.Term.para_open_out {Var : Type u} {M M' N N' : Term Var} [HasFresh Var] [DecidableEq Var] (L : Finset Var) (mem : xL, paraRs.Red (M.open' (fvar x)) (N.open' (fvar x))) (para : paraRs.Red M' N') :
        paraRs.Red (M.open' M') (N.open' N')

        Parallel substitution respects fresh opening.

        Parallel reduction has the diamond property.