Documentation

Cslib.Foundations.Semantics.LTS.FLTSToLTS

def Cslib.FLTS.toLTS {State : Type u_1} {Label : Type u_2} (flts : FLTS State Label) :
LTS State Label

FLTS is a special case of LTS.

Equations
  • flts.toLTS = { Tr := fun (s1 : State) (μ : Label) (s2 : State) => flts.tr s1 μ = s2 }
Instances For
    instance Cslib.FLTS.instCoeLTS {State : Type u_1} {Label : Type u_2} :
    Coe (FLTS State Label) (LTS State Label)
    Equations
    theorem Cslib.FLTS.toLTS_tr {State : Type u_1} {Label : Type u_2} {flts : FLTS State Label} {s1 : State} {μ : Label} {s2 : State} :
    flts.toLTS.Tr s1 μ s2 flts.tr s1 μ = s2

    FLTS.toLTS correctly characterises transitions.

    instance Cslib.FLTS.toLTS_deterministic {State : Type u_1} {Label : Type u_2} (flts : FLTS State Label) :

    The transition system of a FLTS is deterministic.

    instance Cslib.FLTS.toLTS_imageFinite {State : Type u_1} {Label : Type u_2} (flts : FLTS State Label) :

    The transition system of a FLTS is image-finite.

    Equations
    theorem Cslib.FLTS.toLTS_mtr {State : Type u_1} {Label : Type u_2} {flts : FLTS State Label} {s1 : State} {μs : List Label} {s2 : State} :
    flts.toLTS.MTr s1 μs s2 flts.mtr s1 μs = s2

    Characterisation of multistep transitions.