Documentation

Cslib.Foundations.Semantics.LTS.Basic

Labelled Transition System (LTS) #

A Labelled Transition System (LTS) models the observable behaviour of the possible states of a system. They are particularly popular in the fields of concurrency theory, logic, and programming languages.

Main definitions #

Main statements #

References #

structure Cslib.LTS (State : Type u) (Label : Type v) :
Type (max u v)

A Labelled Transition System (LTS) for a type of states (State) and a type of transition labels (Label) consists of a labelled transition relation (Tr).

  • Tr : StateLabelStateProp

    The transition relation.

Instances For

    Multi-step transitions #

    inductive Cslib.LTS.MTr {State : Type u} {Label : Type v} (lts : LTS State Label) :
    StateList LabelStateProp

    Definition of a multi-step transition.

    (Implementation note: compared to [Mon23], we choose stepL instead of stepR as fundamental rule. This makes working with lists of labels more convenient, because we follow the same construction. It is also similar to what is done in the SimpleGraph library in mathlib.)

    • refl {State : Type u} {Label : Type v} {lts : LTS State Label} {s : State} : lts.MTr s [] s
    • stepL {State : Type u} {Label : Type v} {lts : LTS State Label} {s1 : State} {μ : Label} {s2 : State} {μs : List Label} {s3 : State} : lts.Tr s1 μ s2lts.MTr s2 μs s3lts.MTr s1 (μ :: μs) s3
    Instances For
      theorem Cslib.LTS.MTr.single {State : Type u} {Label : Type v} (lts : LTS State Label) {s1 : State} {μ : Label} {s2 : State} :
      lts.Tr s1 μ s2lts.MTr s1 [μ] s2

      Any transition is also a multi-step transition.

      theorem Cslib.LTS.MTr.stepR {State : Type u} {Label : Type v} (lts : LTS State Label) {s1 : State} {μs : List Label} {s2 : State} {μ : Label} {s3 : State} :
      lts.MTr s1 μs s2lts.Tr s2 μ s3lts.MTr s1 (μs ++ [μ]) s3

      Any multi-step transition can be extended by adding a transition.

      theorem Cslib.LTS.MTr.comp {State : Type u} {Label : Type v} (lts : LTS State Label) {s1 : State} {μs1 : List Label} {s2 : State} {μs2 : List Label} {s3 : State} :
      lts.MTr s1 μs1 s2lts.MTr s2 μs2 s3lts.MTr s1 (μs1 ++ μs2) s3

      Multi-step transitions can be composed.

      theorem Cslib.LTS.MTr.single_invert {State : Type u} {Label : Type v} (lts : LTS State Label) (s1 : State) (μ : Label) (s2 : State) :
      lts.MTr s1 [μ] s2lts.Tr s1 μ s2

      Any 1-sized multi-step transition implies a transition with the same states and label.

      theorem Cslib.LTS.MTr.nil_eq {State : Type u} {Label : Type v} (lts : LTS State Label) {s1 s2 : State} (h : lts.MTr s1 [] s2) :
      s1 = s2

      In any zero-steps multi-step transition, the origin and the derivative are the same.

      def Cslib.LTS.CanReach {State : Type u} {Label : Type v} (lts : LTS State Label) (s1 s2 : State) :

      A state s1 can reach a state s2 if there exists a multi-step transition from s1 to s2.

      Equations
      Instances For
        theorem Cslib.LTS.CanReach.refl {State : Type u} {Label : Type v} (lts : LTS State Label) (s : State) :
        lts.CanReach s s

        Any state can reach itself.

        def Cslib.LTS.generatedBy {State : Type u} {Label : Type v} (lts : LTS State Label) (s : State) :
        LTS { s' : State // lts.CanReach s s' } Label

        The LTS generated by a state s is the LTS given by all the states reachable from s.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Definitions about termination #

          def Cslib.LTS.MayTerminate {State : Type u_1} {Label : Type u_2} (lts : LTS State Label) {Terminated : StateProp} (s : State) :

          A state 'may terminate' if it can reach a terminated state. The definition of Terminated is a parameter.

          Equations
          Instances For
            def Cslib.LTS.Stuck {State : Type u_1} {Label : Type u_2} (lts : LTS State Label) {Terminated : StateProp} (s : State) :

            A state 'is stuck' if it is not terminated and cannot go forward. The definition of Terminated is a parameter.

            Equations
            • lts.Stuck s = (¬Terminated s ¬∃ (μ : Label) (s' : State), lts.Tr s μ s')
            Instances For

              Definitions for the unions of LTSs #

              Note: there is a nontrivial balance between ergonomics and generality here. These definitions might change in the future.

              def Cslib.LTS.union {State : Type u} {Label : Type v} (lts1 lts2 : LTS State Label) :
              LTS State Label

              The union of two LTSs defined on the same types.

              Equations
              Instances For
                def Cslib.LTS.unionSubtype {State : Type u} {Label : Type v} {S1 : StateProp} {L1 : LabelProp} {S2 : StateProp} {L2 : LabelProp} [DecidablePred S1] [DecidablePred L1] [DecidablePred S2] [DecidablePred L2] (lts1 : LTS (Subtype S1) (Subtype L1)) (lts2 : LTS (Subtype S2) (Subtype L2)) :
                LTS State Label

                The union of two LTSs that have common supertypes for states and labels.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  def Cslib.LTS.inl {State : Type u} {Label : Type v} {State' : Type u_1} (lts : LTS State Label) :
                  LTS { x : State State' // x.isLeft = true } { _label : Label // True }

                  Lifting of an LTS State Label to LTS (State ⊕ State') Label.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    def Cslib.LTS.inr {State : Type u} {Label : Type v} {State' : Type u_1} (lts : LTS State Label) :
                    LTS { x : State' State // x.isRight = true } { _label : Label // True }

                    Lifting of an LTS State Label to LTS (State' ⊕ State) Label.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      def Cslib.LTS.unionSum {Label : Type v} {State1 : Type u_1} {State2 : Type u_2} (lts1 : LTS State1 Label) (lts2 : LTS State2 Label) :
                      LTS (State1 State2) Label

                      Union of two LTSs with the same Label type. The result combines the original respective state types State1 and State2 into (State1 ⊕ State2).

                      Equations
                      Instances For

                        Classes of LTSs #

                        class Cslib.LTS.Deterministic {State : Type u} {Label : Type v} (lts : LTS State Label) :

                        An lts is deterministic if a state cannot reach different states with the same transition label.

                        • deterministic (s1 : State) (μ : Label) (s2 s3 : State) : lts.Tr s1 μ s2lts.Tr s1 μ s3s2 = s3
                        Instances
                          def Cslib.LTS.image {State : Type u} {Label : Type v} (lts : LTS State Label) (s : State) (μ : Label) :
                          Set State

                          The μ-image of a state s is the set of all μ-derivatives of s.

                          Equations
                          Instances For
                            def Cslib.LTS.imageMultistep {State : Type u} {Label : Type v} (lts : LTS State Label) (s : State) (μs : List Label) :
                            Set State

                            The μs-image of a state s, where μs is a list of labels, is the set of all μs-derivatives of s.

                            Equations
                            Instances For
                              def Cslib.LTS.setImage {State : Type u} {Label : Type v} (lts : LTS State Label) (S : Set State) (μ : Label) :
                              Set State

                              The μ-image of a set of states S is the union of all μ-images of the states in S.

                              Equations
                              Instances For
                                def Cslib.LTS.setImageMultistep {State : Type u} {Label : Type v} (lts : LTS State Label) (S : Set State) (μs : List Label) :
                                Set State

                                The μs-image of a set of states S, where μs is a list of labels, is the union of all μs-images of the states in S.

                                Equations
                                Instances For
                                  theorem Cslib.LTS.mem_setImage {State : Type u} {Label : Type v} {S : Set State} {μ : Label} {s' : State} {lts : LTS State Label} :
                                  s' lts.setImage S μ sS, lts.Tr s μ s'

                                  Characterisation of setImage wrt Tr.

                                  theorem Cslib.LTS.tr_setImage {State : Type u} {Label : Type v} {S : Set State} {s : State} {μ : Label} {s' : State} {lts : LTS State Label} (hs : s S) (htr : lts.Tr s μ s') :
                                  s' lts.setImage S μ
                                  theorem Cslib.LTS.mem_setImageMultistep {State : Type u} {Label : Type v} {S : Set State} {μs : List Label} {s' : State} {lts : LTS State Label} :
                                  s' lts.setImageMultistep S μs sS, lts.MTr s μs s'

                                  Characterisation of setImageMultistep with MTr.

                                  theorem Cslib.LTS.mTr_setImage {State : Type u} {Label : Type v} {S : Set State} {s : State} {μs : List Label} {s' : State} {lts : LTS State Label} (hs : s S) (htr : lts.MTr s μs s') :
                                  s' lts.setImageMultistep S μs
                                  theorem Cslib.LTS.setImage_empty {State : Type u} {Label : Type v} {μ : Label} (lts : LTS State Label) :
                                  lts.setImage μ =

                                  The image of the empty set is always the empty set.

                                  theorem Cslib.LTS.setImageMultistep_setImage_head {State : Type u} {Label : Type v} {S : Set State} {μ : Label} {μs : List Label} (lts : LTS State Label) :
                                  lts.setImageMultistep S (μ :: μs) = lts.setImageMultistep (lts.setImage S μ) μs
                                  theorem Cslib.LTS.setImageMultistep_foldl_setImage {State : Type u} {Label : Type v} (lts : LTS State Label) :

                                  Characterisation of LTS.setImageMultistep as List.foldl on LTS.setImage.

                                  theorem Cslib.LTS.mem_foldl_setImage {State : Type u} {Label : Type v} {S : Set State} {μs : List Label} {s' : State} (lts : LTS State Label) :
                                  s' List.foldl lts.setImage S μs sS, lts.MTr s μs s'

                                  Characterisation of membership in List.foldl lts.setImage with MTr.

                                  class Cslib.LTS.ImageFinite {State : Type u} {Label : Type v} (lts : LTS State Label) [image_finite : ∀ (s : State) (μ : Label), Finite (lts.image s μ)] :

                                  An lts is image-finite if all images of its states are finite.

                                    Instances
                                      theorem Cslib.LTS.deterministic_not_lto {State : Type u} {Label : Type v} (lts : LTS State Label) [h : lts.Deterministic] (s : State) (μ : Label) (s' s'' : State) :
                                      s' s''lts.Tr s μ s'¬lts.Tr s μ s''

                                      In a deterministic LTS, if a state has a μ-derivative, then it can have no other μ-derivative.

                                      theorem Cslib.LTS.deterministic_tr_image_singleton {State : Type u} {Label : Type v} (lts : LTS State Label) {s : State} {μ : Label} {s' : State} [lts.Deterministic] :
                                      lts.image s μ = {s'} lts.Tr s μ s'
                                      theorem Cslib.LTS.deterministic_image_char {State : Type u} {Label : Type v} (lts : LTS State Label) [lts.Deterministic] (s : State) (μ : Label) :
                                      (∃ (s' : State), lts.image s μ = {s'}) lts.image s μ =

                                      In a deterministic LTS, any image is either a singleton or the empty set.

                                      instance Cslib.instFiniteElemImageOfDeterministic {State : Type u} {Label : Type v} (lts : LTS State Label) [lts.Deterministic] (s : State) (μ : Label) :
                                      Finite (lts.image s μ)

                                      In a deterministic LTS, the image of any state-label combination is finite.

                                      instance Cslib.LTS.deterministic_imageFinite {State : Type u} {Label : Type v} (lts : LTS State Label) [lts.Deterministic] :

                                      Every deterministic LTS is also image-finite.

                                      Equations
                                      instance Cslib.LTS.finiteState_imageFinite {State : Type u} {Label : Type v} (lts : LTS State Label) [Finite State] :

                                      Every finite-state LTS is also image-finite.

                                      Equations
                                      def Cslib.LTS.HasOutLabel {State : Type u} {Label : Type v} (lts : LTS State Label) (s : State) (μ : Label) :

                                      A state has an outgoing label μ if it has a μ-derivative.

                                      Equations
                                      Instances For
                                        def Cslib.LTS.outgoingLabels {State : Type u} {Label : Type v} (lts : LTS State Label) (s : State) :
                                        Set Label

                                        The set of outgoing labels of a state.

                                        Equations
                                        Instances For
                                          class Cslib.LTS.FinitelyBranching {State : Type u} {Label : Type v} (lts : LTS State Label) [image_finite : ∀ (s : State) (μ : Label), Finite (lts.image s μ)] [finite_state : ∀ (s : State), Finite (lts.outgoingLabels s)] :

                                          An LTS is finitely branching if it is image-finite and all states have finite sets of outgoing labels.

                                            Instances
                                              instance Cslib.LTS.finiteState_finitelyBranching {State : Type u} {Label : Type v} (lts : LTS State Label) [Finite State] [Finite Label] :

                                              Every LTS with finite types for states and labels is also finitely branching.

                                              Equations
                                              class Cslib.LTS.Acyclic {State : Type u} {Label : Type v} (lts : LTS State Label) :

                                              An LTS is acyclic if there are no infinite multi-step transitions.

                                              • acyclic : ∃ (n : ), ∀ (s1 : State) (μs : List Label) (s2 : State), lts.MTr s1 μs s2μs.length < n
                                              Instances
                                                class Cslib.LTS.FiniteLTS {State : Type u} {Label : Type v} [Finite State] (lts : LTS State Label) extends lts.Acyclic :

                                                An LTS is finite if it is finite-state and acyclic.

                                                We call this FiniteLTS instead of just Finite to avoid confusion with the standard Finite class.

                                                Instances
                                                  class Cslib.LTS.LeftTotal {State : Type u} {Label : Type v} (lts : LTS State Label) :

                                                  An LTS is left-total if every state has a μ-derivative for every label μ.

                                                  • left_total (s : State) (μ : Label) : ∃ (s' : State), lts.Tr s μ s'
                                                  Instances

                                                    Weak transitions (single- and multi-step) #

                                                    class Cslib.HasTau (Label : Type v) :

                                                    A type of transition labels that includes a special 'internal' transition τ.

                                                    • τ : Label

                                                      The internal transition label, also known as τ.

                                                    Instances
                                                      inductive Cslib.LTS.STr {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) :
                                                      StateLabelStateProp

                                                      Saturated transition relation.

                                                      Instances For
                                                        def Cslib.LTS.saturate {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) :
                                                        LTS State Label

                                                        The LTS obtained by saturating the transition relation in lts.

                                                        Equations
                                                        Instances For
                                                          theorem Cslib.LTS.saturate_tr_sTr {Label : Type u_1} {State : Type u_2} [HasTau Label] {lts : LTS State Label} :
                                                          lts.saturate.Tr = lts.STr
                                                          theorem Cslib.LTS.STr.single {Label : Type u_1} {State : Type u_2} {s : State} {μ : Label} {s' : State} [HasTau Label] (lts : LTS State Label) :
                                                          lts.Tr s μ s'lts.STr s μ s'

                                                          Any transition is also a saturated transition.

                                                          inductive Cslib.LTS.STrN {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) :
                                                          StateLabelStateProp

                                                          As LTS.str, but counts the number of τ-transitions. This is convenient as induction metric.

                                                          Instances For
                                                            theorem Cslib.LTS.sTr_sTrN {Label : Type u_1} {State : Type u_2} {s1 : State} {μ : Label} {s2 : State} [HasTau Label] (lts : LTS State Label) :
                                                            lts.STr s1 μ s2 ∃ (n : ), lts.STrN n s1 μ s2

                                                            LTS.str and LTS.strN are equivalent.

                                                            @[irreducible]
                                                            theorem Cslib.LTS.STrN.trans_τ {Label : Type u_1} {State : Type u_2} {n : } {s1 s2 : State} {m : } {s3 : State} [HasTau Label] (lts : LTS State Label) (h1 : lts.STrN n s1 HasTau.τ s2) (h2 : lts.STrN m s2 HasTau.τ s3) :
                                                            lts.STrN (n + m) s1 HasTau.τ s3

                                                            Saturated transitions labelled by τ can be composed (weighted version).

                                                            theorem Cslib.LTS.STr.trans_τ {Label : Type u_1} {State : Type u_2} {s1 s2 s3 : State} [HasTau Label] (lts : LTS State Label) (h1 : lts.STr s1 HasTau.τ s2) (h2 : lts.STr s2 HasTau.τ s3) :
                                                            lts.STr s1 HasTau.τ s3

                                                            Saturated transitions labelled by τ can be composed.

                                                            theorem Cslib.LTS.STrN.append {Label : Type u_1} {State : Type u_2} {n1 : } {s1 : State} {μ : Label} {s2 : State} {n2 : } {s3 : State} [HasTau Label] (lts : LTS State Label) (h1 : lts.STrN n1 s1 μ s2) (h2 : lts.STrN n2 s2 HasTau.τ s3) :
                                                            lts.STrN (n1 + n2) s1 μ s3

                                                            Saturated transitions can be appended with τ-transitions (weighted version).

                                                            theorem Cslib.LTS.STrN.comp {Label : Type u_1} {State : Type u_2} {n1 : } {s1 s2 : State} {n2 : } {μ : Label} {s3 : State} {n3 : } {s4 : State} [HasTau Label] (lts : LTS State Label) (h1 : lts.STrN n1 s1 HasTau.τ s2) (h2 : lts.STrN n2 s2 μ s3) (h3 : lts.STrN n3 s3 HasTau.τ s4) :
                                                            lts.STrN (n1 + n2 + n3) s1 μ s4

                                                            Saturated transitions can be composed (weighted version).

                                                            theorem Cslib.LTS.STr.comp {Label : Type u_1} {State : Type u_2} {s1 s2 : State} {μ : Label} {s3 s4 : State} [HasTau Label] (lts : LTS State Label) (h1 : lts.STr s1 HasTau.τ s2) (h2 : lts.STr s2 μ s3) (h3 : lts.STr s3 HasTau.τ s4) :
                                                            lts.STr s1 μ s4

                                                            Saturated transitions can be composed.

                                                            theorem Cslib.LTS.saturate_sTr_tr {Label : Type u_1} {State : Type u_2} {μ : Label} {s : State} [hHasTau : HasTau Label] (lts : LTS State Label) ( : μ = HasTau.τ) :
                                                            lts.saturate.Tr s μ = lts.saturate.STr s μ

                                                            In a saturated LTS, the transition and saturated transition relations are the same.

                                                            theorem Cslib.LTS.mem_saturate_image_τ {Label : Type u_1} {State : Type u_2} {s : State} [HasTau Label] (lts : LTS State Label) :

                                                            In a saturated LTS, every state is in its τ-image.

                                                            def Cslib.LTS.τClosure {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) (S : Set State) :
                                                            Set State

                                                            The τ-closure of a set of states S is the set of states reachable by any state in S by performing only τ-transitions.

                                                            Equations
                                                            Instances For

                                                              Divergence #

                                                              def Cslib.LTS.DivergentExecution {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) (stream : Stream' State) :

                                                              A divergent execution is a stream of states where each state is the anti-τ-derivative of the next.

                                                              Equations
                                                              Instances For
                                                                def Cslib.LTS.Divergent {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) (s : State) :

                                                                A state is divergent if there is a divergent execution from it.

                                                                Equations
                                                                Instances For
                                                                  theorem Cslib.LTS.divergent_drop {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) (stream : Stream' State) (h : lts.DivergentExecution stream) (n : ) :

                                                                  If a stream is a divergent execution, then any 'suffix' is also a divergent execution.

                                                                  class Cslib.LTS.DivergenceFree {Label : Type u_1} {State : Type u_2} [HasTau Label] (lts : LTS State Label) :

                                                                  An LTS is divergence-free if it has no divergent state.

                                                                  Instances
                                                                    def Cslib.LTS.Tr.toRelation {State : Type u_1} {Label : Type u_2} (lts : LTS State Label) (μ : Label) :
                                                                    StateStateProp

                                                                    Returns the relation that relates all states s1 and s2 via a fixed transition label μ.

                                                                    Equations
                                                                    Instances For
                                                                      def Cslib.LTS.MTr.toRelation {State : Type u_1} {Label : Type u_2} (lts : LTS State Label) (μs : List Label) :
                                                                      StateStateProp

                                                                      Returns the relation that relates all states s1 and s2 via a fixed list of transition labels μs.

                                                                      Equations
                                                                      Instances For
                                                                        def Cslib.Relation.toLTS {Label : Type u_1} {State : Type u_2} [DecidableEq Label] (r : StateStateProp) (μ : Label) :
                                                                        LTS State Label

                                                                        Any homogeneous relation can be seen as an LTS where all transitions have the same label.

                                                                        Equations
                                                                        Instances For

                                                                          Support for the calc tactic #

                                                                          instance Cslib.instTransToRelationToRelationConsNil {State : Type u_1} {Label : Type u_2} {μ1 μ2 : Label} (lts : LTS State Label) :

                                                                          Transitions can be chained.

                                                                          Equations
                                                                          instance Cslib.instTransToRelationToRelationCons {State : Type u_1} {Label : Type u_2} {μ : Label} {μs : List Label} (lts : LTS State Label) :

                                                                          Transitions can be chained with multi-step transitions.

                                                                          Equations
                                                                          instance Cslib.instTransToRelationToRelationHAppendListConsNil {State : Type u_1} {Label : Type u_2} {μs : List Label} {μ : Label} (lts : LTS State Label) :

                                                                          Multi-step transitions can be chained with transitions.

                                                                          Equations
                                                                          instance Cslib.instTransToRelationHAppendList {State : Type u_1} {Label : Type u_2} {μs1 μs2 : List Label} (lts : LTS State Label) :
                                                                          Trans (LTS.MTr.toRelation lts μs1) (LTS.MTr.toRelation lts μs2) (LTS.MTr.toRelation lts (μs1 ++ μs2))

                                                                          Multi-step transitions can be chained.

                                                                          Equations

                                                                          A command to create an LTS from a labelled transition α → β → α → Prop, robust to use of variable

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For

                                                                            This command adds transition notations for an LTS. This should not usually be called directly, but from the lts attribute.

                                                                            As an example lts_transition_notation foo "β" will add the notations "[⬝]⭢β" and "[⬝]↠β"

                                                                            Note that the string used will afterwards be registered as a notation. This means that if you have also used this as a constructor name, you will need quotes to access corresponding cases, e.g. «β» in the above example.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For

                                                                              This attribute calls the lts_transition_notation command for the annotated declaration.

                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For