Documentation

Cslib.Computability.Languages.Language

Language (additional definitions and theorems) #

This file contains additional definitions and theorems about Language as defined and developed in Mathlib.Computability.Language.

@[simp]
theorem Language.mem_inf {α : Type u_1} {l m : Language α} (x : List α) :
x lm x l x m
@[simp]
theorem Language.mem_biInf {α : Type u_1} {I : Type u_2} (s : Set I) (l : ILanguage α) (x : List α) :
x is, l i is, x l i
@[simp]
theorem Language.mem_biSup {α : Type u_1} {I : Type u_2} (s : Set I) (l : ILanguage α) (x : List α) :
x is, l i is, x l i
theorem Language.le_one_iff_eq {α : Type u_1} {l : Language α} :
l 1 l = 0 l = 1
@[simp]
theorem Language.mem_sub_one {α : Type u_1} {l : Language α} (x : List α) :
x l - 1 x l x []
@[simp]
theorem Language.reverse_sub {α : Type u_1} (l m : Language α) :
theorem Language.sub_one_mul {α : Type u_1} {l : Language α} :
(l - 1) * l = l * l - 1
theorem Language.mul_sub_one {α : Type u_1} {l : Language α} :
l * (l - 1) = l * l - 1
theorem Language.kstar_sub_one {α : Type u_1} {l : Language α} :