Documentation

Cslib.Computability.Automata.DAToNA

Translation of Deterministic Automata into Nonodeterministic Automata. #

This is the general version of the standard translation of DFAs into NFAs.

def Cslib.Automata.DA.toNA {State : Type u_1} {Symbol : Type u_2} (a : DA State Symbol) :
NA State Symbol

DA is a special case of NA.

Equations
Instances For
    instance Cslib.Automata.DA.instCoeNA {State : Type u_1} {Symbol : Type u_2} :
    Coe (DA State Symbol) (NA State Symbol)
    Equations
    @[simp]
    theorem Cslib.Automata.DA.toNA_run {State : Type u_1} {Symbol : Type u_2} {a : DA State Symbol} {xs : ωSequence Symbol} {ss : ωSequence State} :
    a.toNA.Run xs ss a.run xs = ss
    def Cslib.Automata.DA.FinAcc.toNAFinAcc {State : Type u_1} {Symbol : Type u_2} (a : FinAcc State Symbol) :
    NA.FinAcc State Symbol

    DA.FinAcc is a special case of NA.FinAcc.

    Equations
    Instances For
      @[simp]

      The NA.FinAcc constructed from a DA.FinAcc has the same language.

      def Cslib.Automata.DA.Buchi.toNABuchi {State : Type u_1} {Symbol : Type u_2} (a : Buchi State Symbol) :
      NA.Buchi State Symbol

      DA.Buchi is a special case of NA.Buchi.

      Equations
      Instances For
        @[simp]

        The NA.Buchi constructed from a DA.Buchi has the same ω-language.