
Theorem Proving in Lean

Jeremy Avigad
Leonardo de Moura

Soonho Kong

Version d0dd6d0, updated at 2017-01-30 19:53:44 -0500

http://www.andrew.cmu.edu/user/avigad
http://leodemoura.github.io
http://www.cs.cmu.edu/~soonhok
https://github.com/leanprover/tutorial/commit/d0dd6d00e301cd7b4f2815e153f36b3462afa21b

2

Copyright (c) 2014–2015, Jeremy Avigad, Leonardo de Moura, and Soonho Kong. All
rights reserved. Released under Apache 2.0 license as described in the file LICENSE.

Contents

Contents 3

1 Introduction 7
1.1 Computers and Theorem Proving . 7
1.2 About Lean . 8
1.3 About this Book . 9
1.4 Acknowledgments . 10

2 Dependent Type Theory 11
2.1 Simple Type Theory . 11
2.2 Types as Objects . 13
2.3 Function Abstraction and Evaluation . 16
2.4 Introducing Definitions . 19
2.5 Local definitions . 20
2.6 Variables and Sections . 21
2.7 Namespaces . 23
2.8 Dependent Types . 25
2.9 Implicit Arguments . 28

3 Propositions and Proofs 32
3.1 Propositions as Types . 32
3.2 Working with Propositions as Types . 35
3.3 Propositional Logic . 38
3.4 Introducing Auxiliary Subgoals . 42
3.5 Classical Logic . 42
3.6 Examples of Propositional Validities . 44

4 Quantifiers and Equality 47
4.1 The Universal Quantifier . 47
4.2 Equality . 51

3

CONTENTS 4

4.3 The Calculation Environment . 53
4.4 The Simplifier . 54
4.5 The Existential Quantifier . 55
4.6 More on the Proof Language . 58

5 Interacting with Lean 62
5.1 Displaying Information . 62
5.2 Setting Options . 64
5.3 Using the Library . 65
5.4 Lean’s Emacs Mode . 67
5.5 Projects . 70
5.6 Notation and Abbreviations . 71
5.7 Coercions . 74

6 Inductive Types 76
6.1 Enumerated Types . 77
6.2 Constructors with Arguments . 80
6.3 Inductively Defined Propositions . 84
6.4 Defining the Natural Numbers . 85
6.5 Other Inductive Types . 88
6.6 Generalizations . 90
6.7 Heterogeneous Equality . 92
6.8 Automatically Generated Constructions . 93
6.9 Universe Levels . 96

7 Induction and Recursion 98
7.1 Pattern Matching . 98
7.2 Structural Recursion and Induction . 100
7.3 Dependent Pattern-Matching . 102
7.4 Variations on Pattern Matching . 104
7.5 Inaccessible Terms . 106
7.6 Match Expressions . 107
7.7 Other Examples . 108
7.8 Well-Founded Recursion . 108

8 Building Theories and Proofs 109
8.1 More on Coercions . 109
8.2 More on Implicit Arguments . 112
8.3 Elaboration and Unification . 115
8.4 Reducible Definitions . 118
8.5 Helping the Elaborator . 119

CONTENTS 5

8.6 Sections . 122
8.7 More on Namespaces . 124

9 Type Classes 128
9.1 Type Classes and Instances . 128
9.2 Chaining Instances . 131
9.3 Decidable Propositions . 132
9.4 Overloading with Type Classes . 134
9.5 Managing Type Class Inference . 136
9.6 Instances in Sections . 137
9.7 Bounded Quantification . 138

10 Structures and Records 141
10.1 Declaring Structures . 141
10.2 Objects . 143
10.3 Inheritance . 145
10.4 Structures as Classes . 147

11 Tactic-Style Proofs 150
11.1 Entering the Tactic Mode . 150
11.2 Basic Tactics . 152
11.3 Structuring Tactic Proofs . 157
11.4 Cases and Pattern Matching . 159
11.5 The Rewrite Tactic . 161

12 Axioms and Computation 168
12.1 Historical and Philosophical Context . 169
12.2 Propositional Extensionality . 170
12.3 Function Extensionality . 171
12.4 Quotients . 173
12.5 Choice Axioms . 176
12.6 Excluded Middle . 177
12.7 Propositional Decidability . 179
12.8 Constructive Choice . 180
12.9 Tracking used axioms . 182

13 More Tactics 183
13.1 Induction . 183
13.2 Other Tactics . 185
13.3 Combinators . 187

A Quick Reference 189

CONTENTS 6

A.1 Displaying Information . 189
A.2 Common Options . 189
A.3 Attributes . 190
A.4 Proof Elements . 190
A.5 Sectioning Mechanisms . 191
A.6 Tactics . 192
A.7 Emacs Lean-mode commands . 195
A.8 Unicode Symbols . 195

Bibliography 199

1

Introduction

Please note that this is the tutorial for Lean 2, which allows the use of homotopy type
theory (HoTT). It is not the tutorial for the current version of Lean.

Computers and Theorem Proving
Formal verification involves the use of logical and computational methods to establish
claims that are expressed in precise mathematical terms. These can include ordinary
mathematical theorems, as well as claims that pieces of hardware or software, network
protocols, and mechanical and hybrid systems meet their specifications. In practice, there
is not a sharp distinction between verifying a piece of mathematics and verifying the cor-
rectness of a system: formal verification requires describing hardware and software systems
in mathematical terms, at which point establishing claims as to their correctness becomes
a form of theorem proving. Conversely, the proof of a mathematical theorem may require
a lengthy computation, in which case verifying the truth of the theorem requires verifying
that the computation does what it is supposed to do.

The gold standard for supporting a mathematical claim is to provide a proof, and
twentieth-century developments in logic show most if not all conventional proof methods
can be reduced to a small set of axioms and rules in any of a number of foundational
systems. With this reduction, there are two ways that a computer can help establish a
claim: it can help find a proof in the first place, and it can help verify that a purported
proof is correct.

Automated theorem proving focuses on the “finding” aspect. Resolution theorem provers,
tableau theorem provers, fast satisfiability solvers, and so on provide means of establish-
ing the validity of formulas in propositional and first-order logic. Other systems provide

7

https://github.com/leanprover/lean2
https://leanprover.github.io/introduction_to_lean
https://github.com/leanprover/lean

CHAPTER 1. INTRODUCTION 8

search procedures and decision procedures for specific languages and domains, such as lin-
ear or nonlinear expressions over the integers or the real numbers. Architectures like SMT
(“satisfiability modulo theories”) combine domain-general search methods with domain-
specific procedures. Computer algebra systems and specialized mathematical software
packages provide means of carrying out mathematical computations, establishing mathe-
matical bounds, or finding mathematical objects. A calculation can be viewed as a proof
as well, and these systems, too, help establish mathematical claims.

Automated reasoning systems strive for power and efficiency, often at the expense of
guaranteed soundness. Such systems can have bugs, and it can be difficult to ensure that
the results they deliver are correct. In contrast, interactive theorem proving focuses on
the “verification” aspect of theorem proving, requiring that every claim is supported by
a proof in a suitable axiomatic foundation. This sets a very high standard: every rule of
inference and every step of a calculation has to be justified by appealing to prior definitions
and theorems, all the way down to basic axioms and rules. In fact, most such systems
provide fully elaborated “proof objects” that can be communicated to other systems and
checked independently. Constructing such proofs typically requires much more input and
interaction from users, but it allows us to obtain deeper and more complex proofs.

The Lean Theorem Prover aims to bridge the gap between interactive and automated
theorem proving, by situating automated tools and methods in a framework that supports
user interaction and the construction of fully specified axiomatic proofs. The goal is to
support both mathematical reasoning and reasoning about complex systems, and to verify
claims in both domains.

About Lean
The Lean project was launched by Leonardo de Moura at Microsoft Research Redmond
in 2012. It is an ongoing, long-term effort, and much of the potential for automation
will be realized only gradually over time. Lean is released under the Apache 2.0 license,
a permissive open source license that permits others to use and extend the code and
mathematical libraries freely.

There are currently two ways to use Lean. The first is to run it from the web: a
Javascript version of Lean, a standard library of definitions and theorems, and an editor are
actually downloaded to your browser and run there. This provides a quick and convenient
way to begin experimenting with the system.

The second way to use Lean is to install and run it natively on your computer. The
native version is much faster than the web version, and is more flexible in other ways,
too. It comes with an Emacs mode that offers powerful support for writing and debugging
proofs, and is much better suited for serious use.

CHAPTER 1. INTRODUCTION 9

About this Book
This book is designed to teach you to develop and verify proofs in Lean. Much of the
background information you will need in order to do this is not specific to Lean at all. To
start with, we will explain the logical system that Lean is based on, a version of dependent
type theory that is powerful enough to prove almost any conventional mathematical theorem,
and expressive enough to do it in a natural way. We will explain not only how to define
mathematical objects and express mathematical assertions in dependent type theory, but
also how to use it as a language for writing proofs.

In fact, Lean supports two versions of dependent type theory. The first is a variant
of a system known as the Calculus of Inductive Constructions[1, 4], or CIC. This is the
system used by Lean’s standard library, and is the focus of this tutorial. The second version
of dependent type theory implements an axiomatic framework for homotopy type theory,
which we will discuss in a later chapter.

Because fully detailed axiomatic proofs are so complicated, the challenge of theorem
proving is to have the computer fill in as many of the details as possible. We will describe
various methods to support this in dependent type theory. For example, we will discuss
term rewriting, and Lean’s automated methods for simplifying terms and expressions auto-
matically. Similarly, we will discuss methods of elaboration and type inference, which can
be used to support flexible forms of algebraic reasoning.

Finally, of course, we will discuss features that are specific to Lean, including the
language with which you can communicate with the system, and the mechanisms Lean
offers for managing complex theories and data.

If you are reading this book within Lean’s online tutorial system, you will see a copy
of the Lean editor at right, with an output buffer beneath it. At any point, you can type
things into the editor, press the “play” button, and see Lean’s response. Notice that you
can resize the various windows if you would like.

Throughout the text you will find examples of Lean code like the one below:

theorem and_commutative (p q : Prop) : p ∧ q → q ∧ p :=
assume Hpq : p ∧ q,
have Hp : p, from and.elim_left Hpq,
have Hq : q, from and.elim_right Hpq,
show q ∧ p, from and.intro Hq Hp

Once again, if you are reading the book online, you will see a button that reads “try
it yourself.” Pressing the button copies the example into the Lean editor with enough
surrounding context to make the example compile correctly, and then runs Lean. We
recommend running the examples and experimenting with the code on your own as you
work through the chapters that follow.

http://homotopytypetheory.org/

CHAPTER 1. INTRODUCTION 10

Acknowledgments
This tutorial is an open access project maintained on Github. Many people have con-
tributed to the effort, providing corrections, suggestions, examples, and text. We are
grateful to Ulrik Buchholz, Nathan Carter, Amine Chaieb, Floris van Doorn, Anthony
Hart, Sean Leather, Christopher John Mazey, Daniel Velleman, and Théo Zimmerman for
their contributions, and we apologize to those whose names we have inadvertently omitted.

2

Dependent Type Theory

Dependent type theory is a powerful and expressive language, allowing us to express com-
plex mathematical assertions, write complex hardware and software specifications, and
reason about both of these in a natural and uniform way. Lean is based on a version of
dependent type theory known as the Calculus of Inductive Constructions, with a countable
hierarchy of non-cumulative universes and inductive types. By the end of this chapter, you
will understand much of what this means.

Simple Type Theory
As a foundation for mathematics, set theory has a simple ontology that is rather appeal-
ing. Everything is a set, including numbers, functions, triangles, stochastic processes, and
Riemannian manifolds. It is a remarkable fact that one can construct a rich mathematical
universe from a small number of axioms that describe a few basic set-theoretic construc-
tions.

But for many purposes, including formal theorem proving, it is better to have an infras-
tructure that helps us manage and keep track of the various kinds of mathematical objects
we are working with. “Type theory” gets its name from the fact that every expression has
an associated type. For example, in a given context, x + 0 may denote a natural number
and f may denote a function on the natural numbers.

Here are some examples of how we can declare objects in Lean and check their types.

import standard
open bool nat

/- declare some constants -/

11

CHAPTER 2. DEPENDENT TYPE THEORY 12

constant m : nat -- m is a natural number
constant n : nat
constants b1 b2 : bool -- declare two constants at once

/- check their types -/

check m -- output: nat
check n
check n + 0 -- nat
check m * (n + 0) -- nat
check b1 -- bool
check b1 && b2 -- "&&" is boolean and
check b1 || b2 -- boolean or
check tt -- boolean "true"

The first command, import standard, tells Lean that we intend to use the standard
library. The next command, open bool nat, tells Lean that we will use constants, facts,
and notations from the theory of the booleans and the theory of natural numbers. In
technical terms, bool and nat are namespaces; you will learn more about them later. To
shorten the examples, we will usually hide the relevant imports when they have already
been made explicit in a previous example.

The /- and -/ annotations indicate that the next line is a comment block that is ignored
by Lean. Similarly, two dashes indicate that the rest of the line contains a comment that is
also ignored. Comment blocks can be nested, making it possible to “comment out” chunks
of code, just as in many programming languages.

The constant and constants commands introduce new constant symbols into the
working environment, and the check command asks Lean to report their types. You
should test this, and try typing some examples of your own. Declaring new objects in this
way is a good way to experiment with the system, but it is ultimately undesirable: Lean is
a foundational system, which is to say, it provides us with powerful mechanisms to define
all the mathematical objects we need, rather than simply postulating them to the system.
We will explore these mechanisms in the chapters to come.

What makes simple type theory powerful is that one can build new types out of others.
For example, if A and B are types, A → B denotes the type of functions from A to B, and
A × B denotes the cartesian product, that is, the type of ordered pairs consisting of an
element of A paired with an element of B.

open prod -- makes notation for the product available

constants m n : nat

constant f : nat → nat -- type the arrow as "\to" or "\r"
constant f' : nat -> nat -- alternative ASCII notation
constant f'' : N → N -- \nat is alternative notation for nat
constant p : nat × nat -- type the product as "\times"
constant q : prod nat nat -- alternative notation
constant g : nat → nat → nat

CHAPTER 2. DEPENDENT TYPE THEORY 13

constant g' : nat → (nat → nat) -- has the same type as g!
constant h : nat × nat → nat

constant F : (nat → nat) → nat -- a "functional"

check f -- N → N
check f n -- N
check g m n -- N
check g m -- N → N
check pair m n -- N × N
check pr1 p -- N
check pr2 p -- N
check pr1 (pair m n) -- N
check pair (pr1 p) n -- N × N
check F f -- N

The symbol N is notation for nat; you can enter it by typing \nat. There are a few
more things to notice here. First, the application of a function f to a value x is denoted f
x. Second, when writing type expressions, arrows associate to the right; for example, the
type of g is nat → (nat → nat). Thus we can view g as a function that takes natural
numbers and returns another function that takes a natural number and returns a natural
number. In type theory, this is generally more convenient than writing g as a function that
takes a pair of natural numbers as input, and returns a natural number as output. For
example, it allows us to “partially apply” the function g. The example above shows that g
m has type nat → nat, that is, the function that “waits” for a second argument, n, and
then returns g m n. Taking a function h of type nat × nat → nat and “redefining” it to
look like g is a process known as currying, something we will come back to below.

By now you may also have guessed that, in Lean, pair m n denotes the ordered pair
of m and n, and if p is a pair, pr1 p and pr2 p denote the two projections.

Types as Objects
One way in which Lean’s dependent type theory extends simple type theory is that types
themselves – entities like nat and bool – are first-class citizens, which is to say that they
themselves are objects of study. For that to be the case, each of them also has to have a
type.

check nat -- Type1
check bool -- Type1
check nat → bool -- Type1
check nat × bool -- Type1
check nat → nat -- ...
check nat × nat → nat
check nat → nat → nat
check nat → (nat → nat)
check nat → nat → bool
check (nat → nat) → nat

CHAPTER 2. DEPENDENT TYPE THEORY 14

We see that each one of the expressions above is an object of type Type1. We will explain
the subscripted 1 in a moment. We can also declare new constants and constructors for
types:

constants A B : Type
constant F : Type → Type
constant G : Type → Type → Type

check A -- Type
check F A -- Type
check F nat -- Type
check G A -- Type → Type
check G A B -- Type
check G A nat -- Type

Indeed, we have already seen an example of a function of type Type → Type → Type,
namely, the Cartesian product.

constants A B : Type

check prod -- Type → Type → Type
check prod A -- Type → Type
check prod A B -- Type
check prod nat nat -- Type1

Here is another example: given any type A, the type list A denotes the type of lists of
elements of type A.

import data.list
open list

constant A : Type

check list -- Type → Type
check list A -- Type
check list nat -- Type1

We will see that the ability to treat type constructors as instances of ordinary mathe-
matical functions is a powerful feature of dependent type theory.

For those more comfortable with set-theoretic foundations, it may be helpful to think
of a type as nothing more than a set, in which case, the elements of the type are just the
elements of the set. But there is a circularity lurking nearby. Type itself is an expression
like nat; if nat has a type, shouldn’t Type have a type as well?

check Type -- Type

CHAPTER 2. DEPENDENT TYPE THEORY 15

Lean’s output seems to indicates that Type is an element of itself. But this is misleading.
Russell’s paradox shows that it is inconsistent with the other axioms of set theory to assume
the existence of a set of all sets, and one can derive a similar paradox in dependent type
theory. So, is Lean inconsistent?

What is going on is that Lean’s foundational fragment actually has a hierarchy of types,

Type.{1} : Type.{2} : Type.{3} :

Think of Type.{1} as a universe of “small” or “ordinary” types. Type.{2} is then a larger
universe of types, which contains Type.{1} as an element. When we declare a constant
A : Type, Lean implicitly creates a variable u, and declares A : Type.{u}. In other
words, A is a type in some unspecified universe. The expression A is then polymorphic;
whenever it appears, Lean silently tries to infer which universe A lives in, maintaining as
much generality as possible.

You can ask Lean’s pretty printer to make this information explicit, and use additional
annotations to specify universe levels explicitly.

constants A B : Type
check A -- A : Type
check B -- B : Type
check Type -- Type : Type
check Type → Type -- Type → Type : Type

set_option pp.universes true -- display universe information

check A -- A.{l_1} : Type.{l_1}
check B -- B.{l_1} : Type.{l_1}
check Type -- Type.{l_1} : Type.{l_1 + 1}
check Type → Type -- Type.{l_1} → Type.{l_2} : Type.{imax (l_1+1) (l_2+1)}

universe u
constant C : Type.{u}
check C -- C : Type.{u}
check A → C -- A.{l_1} → C : Type.{imax l_1 u}

universe variable v
constants D E : Type
check D → E -- D.{l_1} → E.{l_2} : Type.{imax l_1 l_2}
check D.{v} → E.{v} -- D.{v} → E.{v} : Type.{v}

The command universe u creates a fixed universe parameter. In contrast, in the last
example, the universe variable v is only used to put D and E in the same type universe.
When D.{v} → E.{v} occurs in a more elaborate context, Lean is constrained to assign
the same universe parameter to both.

You should not worry about the meaning of imax right now. Universe contraints are
subtle, but the good news is that Lean handles them pretty well. As a result, in ordinary
situations you can ignore the universe parameters and simply write Type, leaving the
“universe management” to Lean.

CHAPTER 2. DEPENDENT TYPE THEORY 16

Function Abstraction and Evaluation
We have seen that if we have m n : nat, then we have pair m n : nat × nat. This
gives us a way of creating pairs of natural numbers. Conversely, if we have p : nat ×
nat, then we have pr1 p : nat and pr2 p : nat. This gives us a way of “using” a pair,
by extracting its two components.

We already know how to “use” a function f : A → B, namely, we can apply it to
an element a : A to obtain f a : B. But how do we create a function from another
expression?

The companion to application is a process known as “abstraction,” or “lambda abstrac-
tion.” Suppose that by temporarily postulating a variable x : A we can construct an
expression t : B. Then the expression fun x : A, t, or, equivalently, λ x : A, t, is
an object of type A → B. Think of this as the function from A to B which maps any value
x to the value t, which depends on x. For example, in mathematics it is common to say
“let f be the function which maps any natural number x to x + 5.” The expression λ x :
nat, x + 5 is just a symbolic representation of the right-hand side of this assignment.

import data.nat data.bool
open nat bool

check fun x : nat, x + 5
check λ x : nat, x + 5

Here are some more abstract examples:

constants A B : Type
constants a1 a2 : A
constants b1 b2 : B

constant f : A → A
constant g : A → B
constant h : A → B → A
constant p : A → A → bool

check fun x : A, f x -- A → A
check λ x : A, f x -- A → A
check λ x : A, f (f x) -- A → A
check λ x : A, h x b1 -- A → A
check λ y : B, h a1 y -- B → A
check λ x : A, p (f (f x)) (h (f a1) b2) -- A → bool
check λ x : A, λ y : B, h (f x) y -- A → B → A
check λ (x : A) (y : B), h (f x) y -- A → B → A
check λ x y, h (f x) y -- A → B → A

Lean interprets the final three examples as the same expression; in the last expression,
Lean infers the type of x and y from the types of f and h.

Be sure to try writing some expressions of your own. Some mathematically common
examples of operations of functions can be described in terms of lambda abstraction:

CHAPTER 2. DEPENDENT TYPE THEORY 17

constants A B C : Type
constant f : A → B
constant g : B → C
constant b: B

check λ x : A, x -- the identity function on A
check λ x : A, b -- a constant function on A
check λ x : A, g (f x) -- the composition of g and f
check λ x, g (f x) -- (Lean can figure out the type of x)

-- we can abstract any of the constants in the previous definitions

check λ b : B, λ x : A, x -- B → A → A
check λ (b : B) (x : A), x -- equivalent to the previous line
check λ (g : B → C) (f : A → B) (x : A), g (f x)

-- (B → C) → (A → B) → A → C
-- we can even abstract over the type

check λ (A B : Type) (b : B) (x : A), x
check λ (A B C : Type) (g : B → C) (f : A → B) (x : A), g (f x)

Think about what these expressions mean. The last, for example, denotes the function
that takes three types, A, B, and C, and two functions, g : B → C and f : A → B, and
returns the composition of g and f. (Making sense of the type of this function requires
an understanding of dependent products, which we will explain below.) Within a lambda
expression λ x : A, t, the variable x is a “bound variable”: it is really a placeholder,
whose “scope” does not extend beyond t. For example, the variable b in the expression λ
(b : B) (x : A), x has nothing to do with the constant b declared earlier. In fact, the
expression denotes the same function as λ (u : B) (z : A), z. Formally, the expressions
that are the same up to a renaming of bound variables are called alpha equivalent, and are
considered “the same.” Lean recognizes this equivalence.

Notice that applying a term t : A → B to a term s : A yields an expression t s :
B. Returning to the previous example and renaming bound variables for clarity, notice the
types of the following expressions:

constants A B C : Type
constant f : A → B
constant g : B → C
constant h : A → A
constants (a : A) (b : B)

check (λ x : A, x) a -- A
check (λ x : A, b) a -- B
check (λ x : A, b) (h a) -- B
check (λ x : A, g (f x)) (h (h a)) -- C

check (λ v u x, v (u x)) g f a -- C

check (λ (Q R S : Type) (v : R → S) (u : Q → R) (x : Q),
v (u x)) A B C g f a -- C

CHAPTER 2. DEPENDENT TYPE THEORY 18

As expected, the expression (λ x : A, x) a has type A. In fact, more should be true:
applying the expression (λ x : A, x) to a should “return” the value a. And, indeed, it
does:

constants A B C : Type
constant f : A → B
constant g : B → C
constant h : A → A
constants (a : A) (b : B)

eval (λ x : A, x) a -- a
eval (λ x : A, b) a -- b
eval (λ x : A, b) (h a) -- b
eval (λ x : A, g (f x)) a -- g (f a)

eval (λ v u x, v (u x)) g f a -- g (f a)

eval (λ (Q R S : Type) (v : R → S) (u : Q → R) (x : Q),
v (u x)) A B C g f a -- g (f a)

The command eval tells Lean to evaluate an expression. The process of simplifying an
expression (λ x, t)s to t[s/x] – that is, t with s substituted for the variable x – is
known as beta reduction, and two terms that beta reduce to a common term are called beta
equivalent. But the eval command carries out other forms of reduction as well:

import data.nat data.prod data.bool
open nat prod bool

constants m n : nat
constant b : bool

print "reducing pairs"
eval pr1 (pair m n) -- m
eval pr2 (pair m n) -- n

print "reducing boolean expressions"
eval tt && ff -- ff
eval b && ff -- ff

print "reducing arithmetic expressions"
eval n + 0 -- n
eval n + 2 -- succ (succ n)
eval (2 : nat) + 3 -- 5

In a later chapter, we will explain how these terms are evaluated. For now, we only wish
to emphasize that this is an important feature of dependent type theory: every term has a
computational behavior, and supports a notion of reduction, or normalization. In principle,
two terms that reduce to the same value are called definitionally equal. They are considered
“the same” by the underlying logical framework, and Lean does its best to recognize and
support these identifications.

CHAPTER 2. DEPENDENT TYPE THEORY 19

Introducing Definitions
As we have noted above, declaring constants in the Lean environment is a good way to
postulate new objects to experiment with, but most of the time what we really want to
do is define objects in Lean and prove things about them. The definition command
provides one important way of defining new objects.

constants A B C : Type
constants (a : A) (f : A → B) (g : B → C) (h : A → A)

definition gfa : C := g (f a)

check gfa -- C
print gfa -- g (f a)

-- We can omit the type when Lean can figure it out.
definition gfa' := g (f a)
print gfa'

definition gfha := g (f (h a))
print gfha

definition g_comp_f : A → C := λ x, g (f x)
print g_comp_f

The general form of a definition is definition foo : T := bar. Lean can usually infer
the type T, but it is often a good idea to write it explicitly. This clarifies your intention,
and Lean will flag an error if the right-hand side of the definition does not have the right
type.

Because function definitions are so common, Lean provides an alternative notation,
which puts the abstracted variables before the colon and omits the lambda:

definition g_comp_f (x : A) : C := g (f x)
print g_comp_f

The net effect is the same as the previous definition.
Here are some more examples of definitions, this time in the context of arithmetic:

import data.nat
open nat

constants (m n : nat) (p q : bool)

definition m_plus_n : nat := m + n
check m_plus_n
print m_plus_n

-- again, Lean can infer the type
definition m_plus_n' := m + n

CHAPTER 2. DEPENDENT TYPE THEORY 20

print m_plus_n'

definition double (x : nat) : nat := x + x
print double
check double 3
eval double 3 -- 6

definition square (x : nat) := x * x
print square
check square 3
eval square 3 -- 9

definition do_twice (f : nat → nat) (x : nat) : nat := f (f x)

eval do_twice double 2 -- 8

As an exercise, we encourage you to use do_twice and double to define functions that
quadruple their input, and multiply the input by 8. As a further exercise, we encourage
you to try defining a function Do_Twice : ((nat → nat) → (nat → nat)) → (nat
→ nat) → (nat → nat) which iterates its argument twice, so that Do_Twice do_twice
a function which iterates its input four times, and evaluate Do_Twice do_twice double
2.

Above, we discussed the process of “currying” a function, that is, taking a function f
(a, b) that takes an ordered pair as an argument, and recasting it as a function f' a b
that takes two arguments successively. As another exercise, we encourage you to complete
the following definitions, which “curry” and “uncurry” a function.

import data.prod
open prod

definition curry (A B C : Type) (f : A × B → C) : A → B → C := sorry

definition uncurry (A B C : Type) (f : A → B → C) : A × B → C := sorry

Local definitions
Lean also allows you to introduce “local” definitions using the let construct. The expres-
sion let a := t1 in t2 is definitionally equal to the result of replacing every occurrence
of a in t2 by t1.

import data.nat
open nat

constant n : N
check let y := n + n in y * y

definition t (x : N) : N :=
let y := x + x in y * y

CHAPTER 2. DEPENDENT TYPE THEORY 21

Here, t is definitionally equal to the term (x + x) * (x + x). You can combine multiple
assignments in a single let statement:

constant n : N
check let y := n + n, z := y + y in z * z

Notice that the meaning of the expression let a := t1 in t2 is very similar to the
meaning of (λ a, t2) t1, but the two are not the same. In the first expression, you
should think of every instance of a in t2 as a syntactic abbreviation for t1. In the second
expression, a is a variable, and the expression λ a, t2 has to make sense independently
of the value of a. The let construct is a stronger means of abbreviation, and there are
expressions of the form let a := t1 in t2 that cannot be expressed as (λ a, t2) t1.
As an exercise, try to understand why the definition of foo below type checks, but the
definition of bar does not.

import data.nat
open nat

definition foo := let a := nat in λ x : a, x + 2

/-
definition bar := (λ a, λ x : a, x + 2) nat
-/

Variables and Sections
This is a good place to introduce some organizational features of Lean that are not a part
of the axiomatic framework per se, but make it possible to work in the framework more
efficiently.

We have seen that the constant command allows us to declare new objects, which
then become part of the global context. Declaring new objects in this way is somewhat
crass. Lean enables us to define all of the mathematical objects we need, and declaring
new objects willy-nilly is therefore somewhat lazy. In the words of Bertand Russell, it has
all the advantages of theft over honest toil. We will see in the next chapter that it is also
somewhat dangerous: declaring a new constant is tantamount to declaring an axiomatic
extension of our foundational system, and may result in inconsistency.

So far, in this tutorial, we have used the constant command to create “arbitrary”
objects to work with in our examples. For example, we have declared types A, B, and C to
populate our context. This can be avoided, using implicit or explicit lambda abstraction
in our definitions to declare such objects “locally”:

definition compose (A B C : Type) (g : B → C) (f : A → B) (x : A) :
C := g (f x)

CHAPTER 2. DEPENDENT TYPE THEORY 22

definition do_twice (A : Type) (h : A → A) (x : A) : A := h (h x)

definition do_thrice (A : Type) (h : A → A) (x : A) : A := h (h (h x))

Repeating declarations in this way can be tedious, however. Lean provides us with the
variable and variables commands to make such declarations look global:

variables (A B C : Type)

definition compose (g : B → C) (f : A → B) (x : A) : C := g (f x)
definition do_twice (h : A → A) (x : A) : A := h (h x)
definition do_thrice (h : A → A) (x : A) : A := h (h (h x))

We can declare variables of any type, not just Type itself:

variables (A B C : Type)
variables (g : B → C) (f : A → B) (h : A → A)
variable x : A

definition compose := g (f x)
definition do_twice := h (h x)
definition do_thrice := h (h (h x))

print compose
print do_twice
print do_thrice

Printing them out shows that all three groups of definitions have exactly the same effect.
The variable and variables commands look like the constant and constants com-

mands we have used above, but there is an important difference: rather than creating
permanent entities, the declarations simply tell Lean to insert the variables as bound vari-
ables in definitions that refer to them. Lean is smart enough to figure out which variables
are used explicitly or implicitly in a definition. We can therefore proceed as though A, B,
C, g, f, h, and x are fixed objects when we write our definitions, and let Lean abstract the
definitions for us automatically.

When declared in this way, a variable stays in scope until the end of the file we are
working on, and we cannot declare another variable with the same name. Sometimes,
however, it is useful to limit the scope of a variable. For that purpose, Lean provides the
notion of a section:

section useful
variables (A B C : Type)
variables (g : B → C) (f : A → B) (h : A → A)
variable x : A

definition compose := g (f x)
definition do_twice := h (h x)

CHAPTER 2. DEPENDENT TYPE THEORY 23

definition do_thrice := h (h (h x))
end useful

When the section is closed, the variables go out of scope, and become nothing more than
a distant memory.

You do not have to indent the lines within a section, since Lean treats any blocks of
returns, spaces, and tabs equivalently as whitespace. Nor do you have to name a section,
which is to say, you can use an anonymous section / end pair. If you do name a section,
however, you have to close it using the same name. Sections can also be nested, which
allows you to declare new variables incrementally.

Sections provide us with a general scoping mechanism that governs more than the
insertion of variables. For example, recall that the open command allows us to invoke
identifiers and notation, using namespaces, which will be discussed below. The effects of
an open command are also limited to the section in which it occurs, which provides useful
ways of managing the background context while we work with Lean.

Namespaces
Lean provides us with the ability to group definitions, notations, and other information
into nested, hierarchical namespaces:

namespace foo
constant A : Type
constant a : A
constant f : A → A

definition fa : A := f a
definition ffa : A := f (f a)

print "inside foo"

check A
check a
check f
check fa
check ffa
check foo.A
check foo.fa

end foo

print "outside the namespace"

-- check A -- error
-- check fa -- error
check foo.A
check foo.a
check foo.f
check foo.fa
check foo.ffa

CHAPTER 2. DEPENDENT TYPE THEORY 24

open foo

print "opened foo"

check A
check a
check fa
check foo.fa

When we declare that we are working in the namespace foo, every identifier we declare
has a full name with prefix “foo.” Within the namespace, we can refer to identifiers by
their shorter names, but once we end the namespace, we have to use the longer names.

The open command brings the shorter names into the current context. Often, when we
import a module, we will want to open one or more of the namespaces it contains, to have
access to the short identifiers, notations, and so on. But sometimes we will want to leave
this information hidden, for example, when they conflict with identifiers and notations in
another namespace we want to use. Thus namespaces give us a way to manage our working
environment.

For example, when we work with the natural numbers, we usually want access to the
function add, and its associated notation, +. The command open nat makes these available
to us.

import data.nat -- imports the nat module

check nat.add
check nat.zero

open nat -- imports short identifiers, notations, etc. into the context

check add
check zero

constants m n : nat

check m + n
check 0
check m + 0

Like sections, namespaces can be nested:

namespace foo
constant A : Type
constant a : A
constant f : A → A

definition fa : A := f a

namespace bar
definition ffa : A := f (f a)

CHAPTER 2. DEPENDENT TYPE THEORY 25

check fa
check ffa

end bar

check fa
check bar.ffa

end foo

check foo.fa
check foo.bar.ffa

open foo

check fa
check bar.ffa

Namespaces that have been closed can later be reopened, even in another file:

namespace foo
constant A : Type
constant a : A
constant f : A → A

definition fa : A := f a
end foo

check foo.A
check foo.f

namespace foo
definition ffa : A := f (f a)

end foo

Like sections, nested namespaces have to be closed in the order they are opened. Also, a
namespace cannot be opened within a section; namespaces have to live on the outer levels.

Namespaces and sections serve different purposes: namespaces organize data and sec-
tions declare variables for insertion in theorems. A namespace can be viewed as a special
kind of section, however. In particular, if you use the variable command within a names-
pace, its scope is limited to the namespace. Similarly, if you use an open command within
a namespace, its effects disappear when the namespace is closed.

Dependent Types
You now have rudimentary ways of defining functions and objects in Lean, and we will
gradually introduce you to many more. Our ultimate goal in Lean is to prove things about
the objects we define, and the next chapter will introduce you to Lean’s mechanisms for
stating theorems and constructing proofs. Meanwhile, let us remain on the topic of defining

CHAPTER 2. DEPENDENT TYPE THEORY 26

objects in dependent type theory for just a moment longer, in order to explain what makes
dependent type theory dependent, and why that is useful.

The short explanation is that what makes dependent type theory dependent is that
types can depend on parameters. You have already seen a nice example of this: the type
list A depends on the argument A, and this dependence is what distinguishes list nat
and list bool. For another example, consider the type vec A n, the type of vectors of
elements of A of length n. This type depends on two parameters: the type A : Type of the
elements in the vector and the length n : nat.

Suppose we wish to write a function cons which inserts a new element at the head of
a list. What type should cons have? Such a function is polymorphic: we expect the cons
function for nat, bool, or an arbitrary type A to behave the same way. So it makes sense
to take the type to be the first argument to cons, so that for any type, A, cons A is the
insertion function for lists of type A. In other words, for every A, cons A is the function
that takes an element a : A and a list l : list A, and returns a new list, so we have
cons A a l : list A.

It is clear that cons A should have type A → list A → list A. But what type should
cons have? A first guess might be Type → A → list A → list A, but, on reflection,
this does not make sense: the A in this expression does not refer to anything, whereas it
should refer to the argument of type Type. In other words, assuming A : Type is the first
argument to the function, the type of the next two elements are A and list A. These types
vary depending on the first argument, A.

This is an instance of a Pi type in dependent type theory. Given A : Type and B : A
→ Type, think of B as a family of types over A, that is, a type B a for each a : A. In that
case, the type Π x : A, B x denotes the type of functions f with the property that, for
each a : A, f a is an element of B a. In other words, the type of the value returned by f
depends on its input.

Notice that Π x : A, B makes sense for any expression B : Type. When the value of
B depends on x (as does, for example, the expression B x in the previous paragraph), Π x
: A, B denotes a dependent function type. When B doesn’t depend on x, Π x : A, B is
no different from the type A → B. Indeed, in dependent type theory (and in Lean), the Pi
construction is fundamental, and A → B is nothing more than notation for Π x : A, B
when B does not depend on A.

Returning to the example of lists, we can model some basic list operations as follows.
We use namespace hide to avoid a conflict with the list type defined in the standard
library.

namespace hide
constant list : Type → Type

namespace list
constant cons : Π A : Type, A → list A → list A -- type the product as "\Pi"
constant nil : Π A : Type, list A -- the empty list
constant head : Π A : Type, list A → A -- returns the first element

CHAPTER 2. DEPENDENT TYPE THEORY 27

constant tail : Π A : Type, list A → list A -- returns the remainder
constant append : Π A : Type, list A → list A → list A -- concatenates two lists

end list
end hide

We emphasize that these constant declarations are only for the purposes of illustration.
The list type and all these operations are, in fact, defined in Lean’s standard library,
and are proved to have the expected properties. In fact, as the next example shows, the
types indicated above are essentially the types of the objects that are defined in the library.
(We will explain the @ symbol and the difference between the round and curly brackets
momentarily.)

import data.list
open list

check list -- Type → Type

check @cons -- Π {T : Type}, T → list T → list T
check @nil -- Π {T : Type}, list T
check @head -- Π {T : Type} [h : inhabited T], list T → T
check @tail -- Π {T : Type}, list T → list T
check @append -- Π {T : Type}, list T → list T → list T

There is a subtlety in the definition of head: when passed the empty list, the function
must determine a default element of the relevant type. We will explain how this is done in
Chapter Type Classes.

Vector operations are handled similarly:

import data.nat
open nat

constant vec : Type → nat → Type

namespace vec
constant empty : Π A : Type, vec A 0
constant cons : Π (A : Type) (n : nat), A → vec A n → vec A (n + 1)
constant append : Π (A : Type) (n m : nat), vec A m → vec A n → vec A (n + m)

end vec

In the coming chapters, you will come across many instances of dependent types. Here
we will mention just one more important and illustrative example, the Sigma types, Σ x :
A, B x, sometimes also known as dependent pairs. These are, in a sense, companions to
the Pi types. The type Σ x : A, B x denotes the type of pairs sigma.mk a b where a
: A and b : B a. You can also use angle brackets <a, b> as notation for sigma.mk a
b. (To type these brackets, use the shortcuts \< and \>.) Just as Pi types Π x : A, B x
generalize the notion of a function type A → B by allowing B to depend on A, Sigma types
Σ x : A, B x generalize the cartesian product A × B in the same way: in the expression

CHAPTER 2. DEPENDENT TYPE THEORY 28

sigma.mk a b, the type of the second element of the pair, b : B a, depends on the first
element of the pair, a : A.

import data.sigma
open sigma

variable A : Type
variable B : A → Type
variable a : A
variable b : B a

check sigma.mk a b -- Σ (a : A), B a
check ⟨a, b⟩ -- Σ (a : A), B a
check pr1 ⟨a, b⟩ -- A
check pr1 ⟨a, b⟩ -- alternative notation; use _1 for the subscript
check pr2 ⟨a, b⟩ -- B (pr1 ⟨a, b⟩)
check pr2 ⟨a, b⟩ -- alternative notation

eval pr1 ⟨a, b⟩ -- a
eval pr2 ⟨a, b⟩ -- b

Note, by the way, that the identifiers pr1 and pr2 are also used for the cartesian product
type. The notations are made available when you open the namespaces prod and sigma
respectively; if you open both, the identifier is simply overloaded. Without opening the
namespaces, you can refer to them as prod.pr1, prod.pr2, sigma.pr1, and sigma.pr2.

If you open the namespaces prod.ops and sigma.ops, you can, moreover, use additional
convenient notation for the projections:

import data.sigma data.prod

variable A : Type
variable B : A → Type
variable a : A
variable b : B a
variables C D : Type
variables (c : C) (d : D)

open sigma.ops
open prod.ops

eval (a, b).1
eval (a, b).2
eval ⟨c, d⟩.1
eval ⟨c, d⟩.2

Implicit Arguments
Suppose we have an implementation of lists as described above.

CHAPTER 2. DEPENDENT TYPE THEORY 29

namespace hide
constant list : Type → Type

namespace list
constant cons : Π A : Type, A → list A → list A
constant nil : Π A : Type, list A
constant append : Π A : Type, list A → list A → list A

end list
end hide

Then, given a type A, some elements of A, and some lists of elements of A, we can construct
new lists using the constructors.

open hide.list

variable A : Type
variable a : A
variables l1 l2 : list A

check cons A a (nil A)
check append A (cons A a (nil A)) l1
check append A (append A (cons A a (nil A)) l1) l2

Because the constructors are polymorphic over types, we have to insert the type A as
an argument repeatedly. But this information is redundant: one can infer the argument
A in cons A a (nil A) from the fact that the second argument, a, has type A. One can
similarly infer the argument in nil A, not from anything else in that expression, but from
the fact that it is sent as an argument to the function cons, which expects an element of
type list A in that position.

This is a central feature of dependent type theory: terms carry a lot of information,
and often some of that information can be inferred from the context. In Lean, one uses an
underscore, _, to specify that the system should fill in the information automatically. This
is known as an “implicit argument.”

check cons _ a (nil _)
check append _ (cons _ a (nil _)) l1
check append _ (append _ (cons _ a (nil _)) l1) l2

It is still tedious, however, to type all these underscores. When a function takes an
argument that can generally be inferred from context, Lean allows us to specify that this
argument should, by default, be left implicit. This is done by putting the arguments in
curly braces, as follows:

namespace list
constant cons : Π {A : Type}, A → list A → list A
constant nil : Π {A : Type}, list A
constant append : Π {A : Type}, list A → list A → list A

CHAPTER 2. DEPENDENT TYPE THEORY 30

end list

open hide.list

variable A : Type
variable a : A
variables l1 l2 : list A

check cons a nil
check append (cons a nil) l1
check append (append (cons a nil) l1) l2

All that has changed are the braces around A : Type in the declaration of the variables.
We can also use this device in function definitions:

definition ident {A : Type} (x : A) := x

check ident -- ?A → ?A

variables A B : Type
variables (a : A) (b : B)

check ident -- ?A A B a b → ?A A B a b
check ident a -- A
check ident b -- B

This makes the first argument to ident implicit. Notationally, this hides the specification
of the type, making it look as though ident simply takes an argument of any type. In fact,
the function id is defined in the standard library in exactly this way. We have chosen a
nontraditional name here only to avoid a clash of names.

In the first check command, the inscription ?A indicates that the type of ident depends
on a “placeholder,” or “metavariable,” that should, in general, be inferred from the context.
The output of the second check command is somewhat verbose: it indicates that the
placeholder, ?A, can itself depend on any of the variables A, B, a, and b that are in the
context. If this additional information is annoying, you can suppress it by writing @ident,
as described below. Alternatively, you can set an option to avoid printing these arguments:

variables A B : Type
variables (a : A) (b : B)

set_option pp.metavar_args false
check ident -- ?A → ?A

Variables can also be declared implicit when they are declared with the variables
command:

section
variable {A : Type}
variable x : A

CHAPTER 2. DEPENDENT TYPE THEORY 31

definition ident := x
end

variables A B : Type
variables (a : A) (b : B)

check ident
check ident a
check ident b

This definition of ident has the same effect as the one above.
Lean has very complex mechanisms for instantiating implicit arguments, and we will

see that they can be used to infer function types, predicates, and even proofs. The process
of instantiating “holes,” or “placeholder,” in a term is often known as elaboration. As this
tutorial progresses, we will gradually learn more about what Lean’s powerful elaborator
can do, and we will discuss the elaborator in depth in Chapter Elaboration and Unification.

Sometimes, however, we may find ourselves in a situation where we have declared an
argument to a function to be implicit, but now want to provide the argument explicitly. If
foo is such a function, the notation @foo denotes the same function with all the arguments
made explicit.

check @ident -- Π {A : Type}, A → A
check @ident A -- A → A
check @ident B -- B → B
check @ident A a -- A
check @ident B b -- B

Notice that now the first check command gives the type of the identifier, ident, with-
out inserting any placeholders. Moreover, the output indicates that the first argument is
implicit.

Section More on Implicit Arguments explains another useful annotation, !, which makes
explicit arguments implicit. In a sense, it is the opposite of @, and is most useful in the
context of theorem proving, which we will turn to next.

3

Propositions and Proofs

By now, you have seen how to define some elementary notions in dependent type theory.
You have also seen that it is possible to import objects that are defined in Lean’s library.
In this chapter, we will explain how mathematical propositions and proofs are expressed
in the language of dependent type theory, so that you can start proving assertions about
the objects and notations that have been defined. The encoding we use here is specific to
the standard library; we will discuss proofs in homotopy type theory in a later chapter.

Propositions as Types
One strategy for proving assertions about objects defined in the language of dependent
type theory is to layer an assertion language and a proof language on top of the definition
language. But there is no reason to multiply languages in this way: dependent type theory
is flexible and expressive, and there is no reason we cannot represent assertions and proofs
in the same general framework.

For example, we could introduce a new type, Prop, to represent propositions, and
constructors to build new propositions from others.

constant and : Prop → Prop → Prop
constant or : Prop → Prop → Prop
constant not : Prop → Prop
constant implies : Prop → Prop → Prop

variables p q r : Prop
check and p q -- Prop
check or (and p q) r -- Prop
check implies (and p q) (and q p) -- Prop

32

CHAPTER 3. PROPOSITIONS AND PROOFS 33

We could then introduce, for each element p : Prop, another type Proof p, for the type
of proofs of p. An “axiom” would be constant of such a type.

constant Proof : Prop → Type

constant and_comm : Π p q : Prop, Proof (implies (and p q) (and q p))

variables p q : Prop
check and_comm p q -- Proof (implies (and p q) (and q p))

In addition to axioms, however, we would also need rules to build new proofs from
old ones. For example, in many proof systems for propositional logic, we have the rule of
modus ponens:

From a proof of implies p q and a proof of p, we obtain a proof of q.

We could represent this as follows:

constant modus_ponens (p q : Prop) : Proof (implies p q) → Proof p → Proof q

Systems of natural deduction for propositional logic also typically rely on the following
rule:

Suppose that, assuming p as a hypothesis, we have a proof of q. Then we can
“cancel” the hypothesis and obtain a proof of implies p q.

We could render this as follows:

constant implies_intro (p q : Prop) : (Proof p → Proof q) → Proof (implies p q).

This approach would provide us with a reasonable way of building assertions and proofs.
Determining that an expression t is a correct proof of assertion p would then simply be a
matter of checking that t has type Proof p.

Some simplifications are possible, however. To start with, we can avoid writing the
term Proof repeatedly by conflating Proof p with p itself. In other words, whenever we
have p : Prop, we can interpret p as a type, namely, the type of its proofs. We can then
read t : p as the assertion that t is a proof of p.

Moreover, once we make this identification, the rules for implication show that we can
pass back and forth between implies p q and p → q. In other words, implication between
propositions p and q corresponds to having a function that takes any element of p to an
element of q. As a result, the introduction of the connective implies is entirely redundant:
we can use the usual function space constructor p → q from dependent type theory as our
notion of implication.

CHAPTER 3. PROPOSITIONS AND PROOFS 34

This is the approach followed in the Calculus of Inductive Constructions, and hence in
Lean as well. The fact that the rules for implication in a proof system for natural deduction
correspond exactly to the rules governing abstraction and application for functions is an
instance of the Curry-Howard isomorphism, sometimes known as the propositions-as-types
paradigm. In fact, the type Prop is syntactic sugar for Type.{0}, the very bottom of the
type hierarchy described in the last chapter. Prop has some special features, but like the
other type universes, it is closed under the arrow constructor: if we have p q : Prop, then
p → q : Prop.

There are at least two ways of thinking about propositions as types. To some who take
a constructive view of logic and mathematics, this is a faithful rendering of what it means
to be a proposition: a proposition p represents a sort of data type, namely, a specification
of the type of data that constitutes a proof. A proof of p is then simply an object t : p
of the right type.

Those not inclined to this ideology can view it, rather, as a simple coding trick. To each
proposition p we associate a type, which is empty if p is false and has a single element, say
*, if p is true. In the latter case, let us say that (the type associated with) p is inhabited.
It just so happens that the rules for function application and abstraction can conveniently
help us keep track of which elements of Prop are inhabited. So constructing an element t
: p tells us that p is indeed true. You can think of the inhabitant of p as being the “fact
that p is true.” A proof of p → q uses “the fact that p is true” to obtain “the fact that q
is true.”

Indeed, if p : Prop is any proposition, Lean’s standard kernel treats any two elements
t1 t2 : p as being definitionally equal, much the same way as it treats (λ x, t)s and
t[s/x] as definitionally equal. This is known as “proof irrelevance,” and is consistent with
the interpretation in the last paragraph. It means that even though we can treat proofs t :
p as ordinary objects in the language of dependent type theory, they carry no information
beyond the fact that p is true.

The two ways we have suggested thinking about the propositions-as-types paradigm
differ in a fundamental way. From the constructive point of view, proofs are abstract
mathematical objects that are denoted by suitable expressions in dependent type theory.
In contrast, if we think in terms of the coding trick described above, then the expressions
themselves do not denote anything interesting. Rather, it is the fact that we can write them
down and check that they are well-typed that ensures that the proposition in question is
true. In other words, the expressions themselves are the proofs.

In the exposition below, we will slip back and forth between these two ways of talking,
at times saying that an expression “constructs” or “produces” or “returns” a proof of a
proposition, and at other times simply saying that it “is” such a proof. This is similar
to the way that computer scientists occasionally blur the distinction between syntax and
semantics by saying, at times, that a program “computes” a certain function, and at other
times speaking as though the program “is” the function in question.

In any case, all that matters in the end is that the bottom line is clear. To formally

CHAPTER 3. PROPOSITIONS AND PROOFS 35

express a mathematical assertion in the language of dependent type theory, we need to
exhibit a term p : Prop. To prove that assertion, we need to exhibit a term t : p.
Lean’s task, as a proof assistant, is to help us to construct such a term, t, and to verify
that it is well-formed and has the correct type.

Lean also supports an alternative proof relevant kernel, which forms the basis for ho-
motopy type theory. We will return to this topic in a later chapter.

Working with Propositions as Types
In the propositions-as-types paradigm, theorems involving only → can be proved using
lambda abstraction and application. In Lean, the theorem command introduces a new
theorem:

constants p q : Prop

theorem t1 : p → q → p := λ Hp : p, λ Hq : q, Hp

This looks exactly like the definition of the constant function in the last chapter, the
only difference being that the arguments are elements of Prop rather than Type. Intuitively,
our proof of p → q → p assumes p and q are true, and uses the first hypothesis (trivially)
to establish that the conclusion, p, is true.

Note that the theorem command is really a version of the definition command: under
the propositions and types correspondence, proving the theorem p → q → p is really the
same as defining an element of the associated type. To the kernel type checker, there is no
difference between the two.

There are a few pragmatic differences between definitions and theorems, however, that
you will learn more about in Chapter Building Theories and Proofs. In normal circum-
stances, it is never necessary to unfold the “definition” of a theorem; by proof irrelevance,
any two proofs of that theorem are definitionally equal. Once the proof of a theorem is
complete, typically we only need to know that the proof exists; it doesn’t matter what the
proof is. In light of that fact, Lean tags proofs as irreducible, which serves as a hint to the
parser (more precisely, the elaborator) that there is generally no need to unfold it when
processing a file. Moreover, for efficiency purposes, Lean treats theorems as axiomatic
constants within the file in which they are defined. This makes it possible to process and
check theorems in parallel, since theorems later in a file do not make use of the contents
of earlier proofs.

As with definitions, the print command will show you the proof of a theorem, with
a slight twist: if you want to print a theorem in the same file in which it is defined, you
need to use the reveal command to force Lean to use the theorem itself, rather than its
axiomatic surrogate.

http://homotopytypetheory.org/
http://homotopytypetheory.org/

CHAPTER 3. PROPOSITIONS AND PROOFS 36

theorem t1 : p → q → p := λ Hp : p, λ Hq : q, Hp

reveal t1
print t1

(To save space, the online version of Lean does not store proofs of theorems in the library,
so you cannot print them in the browser interface.)

Notice that the lambda abstractions Hp : p and Hq : q can be viewed as temporary
assumptions in the proof of t1. Lean provides the alternative syntax assume for such a
lambda abstraction:

theorem t1 : p → q → p :=
assume Hp : p,
assume Hq : q,
Hp

Lean also allows us to specify the type of the final term Hp, explicitly, with a show
statement.

theorem t1 : p → q → p :=
assume Hp : p,
assume Hq : q,
show p, from Hp

Adding such extra information can improve the clarity of a proof and help detect errors
when writing a proof. The show command does nothing more than annotate the type, and,
internally, all the presentations of t1 that we have seen produce the same term. Lean also
allows you to use the alternative syntax lemma and corollary instead of theorem:

lemma t1 : p → q → p :=
assume Hp : p,
assume Hq : q,
show p, from Hp

As with ordinary definitions, one can move the lambda-abstracted variables to the left
of the colon:

theorem t1 (Hp : p) (Hq : q) : p := Hp

check t1 -- p → q → p

Now we can apply the theorem t1 just as a function application.

CHAPTER 3. PROPOSITIONS AND PROOFS 37

axiom Hp : p

theorem t2 : q → p := t1 Hp

Here, the axiom command is alternative syntax for constant. Declaring a “constant” Hp
: p is tantamount to declaring that p is true, as witnessed by Hp. Applying the theorem
t1 : p → q → p to the fact Hp : p that p is true yields the theorem t2 : q → p.

Notice, by the way, that the original theorem t1 is true for any propositions p and
q, not just the particular constants declared. So it would be more natural to define the
theorem so that it quantifies over those, too:

theorem t1 (p q : Prop) (Hp : p) (Hq : q) : p := Hp
check t1

The type of t1 is now ∀ p q : Prop, p → q → p. We can read this as the assertion “for
every pair of propositions p q, we have p → q → p”. The symbol ∀ is alternate syntax for
Π, and later we will see how Pi types let us model universal quantifiers more generally. For
the moment, however, we will focus on theorems in propositional logic, generalized over
the propositions. We will tend to work in sections with variables over the propositions, so
that they are generalized for us automatically.

When we generalize t1 in that way, we can then apply it to different pairs of proposi-
tions, to obtain different instances of the general theorem.

theorem t1 (p q : Prop) (Hp : p) (Hq : q) : p := Hp

variables p q r s : Prop

check t1 p q -- p → q → p
check t1 r s -- r → s → r
check t1 (r → s) (s → r) -- (r → s) → (s → r) → r → s

variable H : r → s
check t1 (r → s) (s → r) H -- (s → r) → r → s

Remember that under the propositions-as-types correspondence, a variable H of type r →
s can be viewed as the hypothesis, or premise, that r → s holds. For that reason, Lean
offers the alternative syntax, premise, for variable.

premise H : r → s
check t1 (r → s) (s → r) H

As another example, let us consider the composition function discussed in the last
chapter, now with propositions instead of types.

CHAPTER 3. PROPOSITIONS AND PROOFS 38

variables p q r s : Prop

theorem t2 (H1 : q → r) (H2 : p → q) : p → r :=
assume H3 : p,
show r, from H1 (H2 H3)

As a theorem of propositional logic, what does t2 say?
Lean allows the alternative syntax premise and premises for variable and variables.

This makes sense, of course, for variables whose type is an element of Prop. The following
definition of t2 has the same net effect as the preceding one.

variables p q r s : Prop
premises (H1 : q → r) (H2 : p → q)

theorem t2 : p → r :=
assume H3 : p,
show r, from H1 (H2 H3)

Propositional Logic
Lean defines all the standard logical connectives and notation. The propositional connec-
tives come with the following notation:

Ascii Unicode Emacs shortcut for unicode Definition
true true
false false
not ¬ \not, \neg not
/\ ∧ \and and
 \/ ∨ \or or
-> → \to, \r, \implies
<-> ↔ \iff, \lr iff

They all take values in Prop.

variables p q : Prop

check p → q → p ∧ q
check ¬p → p ↔ false
check p ∨ q → q ∨ p

The order of operations is fairly standard: unary negation ¬ binds most strongly, then
∧ and ∨, and finally → and ↔. For example, a ∧ b → c ∨ d ∧ e means (a ∧ b) →
(c ∨ (d ∧ e)). Remember that → associates to the right (nothing changes now that
the arguments are elements of Prop, instead of some other Type), as do the other binary

CHAPTER 3. PROPOSITIONS AND PROOFS 39

connectives. So if we have p q r : Prop, the expression p → q → r reads “if p, then if
q, then r.” This is just the “curried” form of p ∧ q → r.

In the last chapter we observed that lambda abstraction can be viewed as an “intro-
duction rule” for →. In the current setting, it shows how to “introduce” or establish an
implication. Application can be viewed as an “elimination rule,” showing how to “elim-
inate” or use an implication in a proof. The other propositional connectives are defined
in the standard library in the file init.datatypes, and each comes with its canonical
introduction and elimination rules.

Conjunction
The expression and.intro H1 H2 creates a proof for p ∧ q using proofs H1 : p and H2 :
q. It is common to describe and.intro as the and-introduction rule. In the next example
we use and.intro to create a proof of p → q → p ∧ q.

example (Hp : p) (Hq : q) : p ∧ q := and.intro Hp Hq

check assume (Hp : p) (Hq : q), and.intro Hp Hq

The example command states a theorem without naming it or storing it in the permanent
context. Essentially, it just checks that the given term has the indicated type. It is
convenient for illustration, and we will use it often.

The expression and.elim_left H creates a proof of p from a proof H : p ∧ q.
Similarly, and.elim_right H is a proof of q. They are commonly known as the right and
left and-elimination rules.

example (H : p ∧ q) : p := and.elim_left H
example (H : p ∧ q) : q := and.elim_right H

Because they are so commonly used, the standard library provides the abbreviations
and.left and and.right for and.elim_left and and.elim_right, respectively.

We can now prove p ∧ q → q ∧ p with the following proof term.

example (H : p ∧ q) : q ∧ p :=
and.intro (and.right H) (and.left H)

Notice that and-introduction and and-elimination are similar to the pairing and projec-
tion operations for the cartesian product. The difference is that given Hp : p and Hq : q,
and.intro Hp Hq has type p ∧ q : Prop, while pair Hp Hq has type p × q : Type. The
similarity between ∧ and × is another instance of the Curry-Howard isomorphism, but in
contrast to implication and the function space constructor, ∧ and × are treated separately
in Lean. With the analogy, however, the proof we have just constructed is similar to a
function that swaps the elements of a pair.

CHAPTER 3. PROPOSITIONS AND PROOFS 40

Disjunction
The expression or.intro_left q Hp creates a proof of p ∨ q from a proof Hp : p.
Similarly, or.intro_right p Hq creates a proof for p ∨ q using a proof Hq : q. These
are the left and right or-introduction rules.

example (Hp : p) : p ∨ q := or.intro_left q Hp
example (Hq : q) : p ∨ q := or.intro_right p Hq

The or-elimination rule is slightly more complicated. The idea is that we can prove r
from p ∨ q, by showing that r follows from p and that r follows from q. In other words,
it is a proof “by cases.” In the expression or.elim Hpq Hpr Hqr, or.elim takes three
arguments, Hpq : p ∨ q, Hpr : p → r and Hqr : q → r, and produces a proof of r.
In the following example, we use or.elim to prove p ∨ q → q ∨ p.

example (H : p ∨ q) : q ∨ p :=
or.elim H

(assume Hp : p,
show q ∨ p, from or.intro_right q Hp)

(assume Hq : q,
show q ∨ p, from or.intro_left p Hq)

In most cases, the first argument of or.intro_right and or.intro_left can be in-
ferred automatically by Lean. Lean therefore provides or.inr and or.inl as shorthands
for or.intro_right _ and or.intro_left _. Thus the proof term above could be written
more concisely:

example (H : p ∨ q) : q ∨ p := or.elim H (λ Hp, or.inr Hp) (λ Hq, or.inl Hq)

Notice that there is enough information in the full expression for Lean to infer the types of
Hp and Hq as well. But using the type annotations in the longer version makes the proof
more readable, and can help catch and debug errors.

Negation and Falsity
The expression not.intro H produces a proof of ¬p from H : p → false. That is,
we obtain ¬p if we can derive a contradiction from p. The expression not.elim Hnp Hp
produces a proof of false from Hp : p and Hnp : ¬p. The next example uses these rules
to produce a proof of (p → q) → ¬q → ¬p.

example (Hpq : p → q) (Hnq : ¬q) : ¬p :=
not.intro

(assume Hp : p,
show false, from not.elim Hnq (Hpq Hp))

CHAPTER 3. PROPOSITIONS AND PROOFS 41

In the standard library, ¬p is actually an abbreviation for p → false, that is, the
fact that p implies a contradiction. You can check that not.intro then amounts to the
introduction rule for implication. Similarly, the rule not.elim, that is, the principle ¬p
→ p → false, corresponds to function application. In other words, ¬p → p → false is
derived by applying the first argument to the second, with the term assume Hnp, assume
Hp, Hnp Hp. We can thus avoid the use of not.intro and not.elim entirely, in favor of
abstraction and elimination:

example (Hpq : p → q) (Hnq : ¬q) : ¬p :=
assume Hp : p, Hnq (Hpq Hp)

The connective false has a single elimination rule, false.elim, which expresses the
fact that anything follows from a contradiction. This rule is sometimes called ex falso
(short for ex falso sequitur quodlibet), or the principle of explosion.

example (Hp : p) (Hnp : ¬p) : q := false.elim (Hnp Hp)

The arbitrary fact, q, that follows from falsity is an implicit argument in false.elim
and is inferred automatically. This pattern, deriving an arbitrary fact from contradictory
hypotheses, is quite common, and is represented by absurd.

example (Hp : p) (Hnp : ¬p) : q := absurd Hp Hnp

Here, for example, is a proof of ¬p → q → (q → p) → r:

example (Hnp : ¬p) (Hq : q) (Hqp : q → p) : r :=
absurd (Hqp Hq) Hnp

Incidentally, just as false has only an elimination rule, true has only an introduction
rule, true.intro : true, sometimes abbreviated trivial : true. In other words, true
is simply true, and has a canonical proof, trivial.

Logical Equivalence
The expression iff.intro H1 H2 produces a proof of p ↔ q from H1 : p → q and H2
: q → p. The expression iff.elim_left H produces a proof of p → q from H : p ↔
q. Similarly, iff.elim_right H produces a proof of q → p from H : p ↔ q. Here is a
proof of p ∧ q ↔ q ∧ p:

theorem and_swap : p ∧ q ↔ q ∧ p :=
iff.intro

(assume H : p ∧ q,
show q ∧ p, from and.intro (and.right H) (and.left H))

CHAPTER 3. PROPOSITIONS AND PROOFS 42

(assume H : q ∧ p,
show p ∧ q, from and.intro (and.right H) (and.left H))

check and_swap p q -- p ∧ q ↔ q ∧ p

Because they represent a form of modus ponens, iff.elim_left and iff.elim_right
can be abbreviated iff.mp and iff.mpr, respectively. In the next example, we use that
theorem to derive q ∧ p from p ∧ q:

premise H : p ∧ q
example : q ∧ p := iff.mp (and_swap p q) H

Introducing Auxiliary Subgoals
This is a good place to introduce another device Lean offers to help structure long proofs,
namely, the have construct, which introduces an auxiliary subgoal in a proof. Here is a
small example, adapted from the last section:

section
variables p q : Prop

example (H : p ∧ q) : q ∧ p :=
have Hp : p, from and.left H,
have Hq : q, from and.right H,
show q ∧ p, from and.intro Hq Hp

end

Internally, the expression have H : p, from s, t produces the term (λ (H : p), t)
s. In other words, s is a proof of p, t is a proof of the desired conclusion assuming H : p,
and the two are combined by a lambda abstraction and application. This simple device is
extremely useful when it comes to structuring long proofs, since we can use intermediate
have’s as stepping stones leading to the final goal.

Classical Logic
The introduction and elimination rules we have seen so far are all constructive, which is
to say, they reflect a computational understanding of the logical connectives based on the
propositions-as-types correspondence. Ordinary classical logic adds to this the law of the
excluded middle, p ∨ ¬p. To use this principle, you have to open the classical namespace.

open classical

variable p : Prop
check em p

CHAPTER 3. PROPOSITIONS AND PROOFS 43

Intuitively, the constructive “or” is very strong: asserting p ∨ q amounts to knowing
which is the case. If RH represents the Riemann hypothesis, a classical mathematician is
willing to assert RH ∨ ¬RH, even though we cannot yet assert either disjunct.

One consequence of the law of the excluded middle is the principle of double-negation
elimination:

theorem dne {p : Prop} (H : ¬¬p) : p :=
or.elim (em p)

(assume Hp : p, Hp)
(assume Hnp : ¬p, absurd Hnp H)

Double-negation elimination allows one to prove any proposition, p, by assuming ¬p and
deriving false, because that amounts to proving ¬¬p. In other words, double-negation
elimination allows one to carry out a proof by contradiction, something which is not gen-
erally possible in constructive logic. As an exercise, you might try proving the converse,
that is, showing that em can be proved from dne.

The classical axioms also gives you access to additional patterns of proof that can be
justified by appeal to em. For example, one can carry out a proof by cases:

example (H : ¬¬p) : p :=
by_cases

(assume H1 : p, H1)
(assume H1 : ¬p, absurd H1 H)

Or you can carry out a proof by contradiction:

example (H : ¬¬p) : p :=
by_contradiction

(assume H1 : ¬p,
show false, from H H1)

If you are not used to thinking constructively, it may take some time for you to get a
sense of where classical reasoning is used. It is needed in the following example because,
from a constructive standpoint, knowing that p and q are not both true does not necessarily
tell you which one is false:

example (H : ¬ (p ∧ q)) : ¬ p ∨ ¬ q :=
or.elim (em p)

(assume Hp : p,
or.inr
(show ¬q, from

assume Hq : q,
H (and.intro Hp Hq)))

(assume Hp : ¬p,
or.inl Hp)

CHAPTER 3. PROPOSITIONS AND PROOFS 44

We will see later that there are situations in constructive logic where principles like
excluded middle and double-negation elimination are permissible, and Lean supports the
use of classical reasoning in such contexts.

There are additional classical axioms that are not included by default in the standard
library. We will discuss these in detail in Chapter Axioms and Computation.

Examples of Propositional Validities
Lean’s standard library contains proofs of many valid statements of propositional logic, all
of which you are free to use in proofs of your own. In this section, we will review some
common identities, and encourage you to try proving them on your own using the rules
above.

The following is a long list of assertions in propositional logic. Prove as many as you
can, using the rules introduced above to replace the sorry placeholders by actual proofs.
The ones that require classical reasoning are grouped together at the end, while the rest
are constructively valid.

open classical

variables p q r s : Prop

-- commutativity of ∧ and ∨
example : p ∧ q ↔ q ∧ p := sorry
example : p ∨ q ↔ q ∨ p := sorry

-- associativity of ∧ and ∨
example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := sorry
example : (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) := sorry

-- distributivity
example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := sorry
example : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r) := sorry

-- other properties
example : (p → (q → r)) ↔ (p ∧ q → r) := sorry
example : ((p ∨ q) → r) ↔ (p → r) ∧ (q → r) := sorry
example : ¬(p ∨ q) ↔ ¬p ∧ ¬q := sorry
example : ¬p ∨ ¬q → ¬(p ∧ q) := sorry
example : ¬(p ∧ ¬ p) := sorry
example : p ∧ ¬q → ¬(p → q) := sorry
example : ¬p → (p → q) := sorry
example : (¬p ∨ q) → (p → q) := sorry
example : p ∨ false ↔ p := sorry
example : p ∧ false ↔ false := sorry
example : ¬(p ↔ ¬p) := sorry
example : (p → q) → (¬q → ¬p) := sorry

-- these require classical reasoning
example : (p → r ∨ s) → ((p → r) ∨ (p → s)) := sorry
example : ¬(p ∧ q) → ¬p ∨ ¬q := sorry

CHAPTER 3. PROPOSITIONS AND PROOFS 45

example : ¬(p → q) → p ∧ ¬q := sorry
example : (p → q) → (¬p ∨ q) := sorry
example : (¬q → ¬p) → (p → q) := sorry
example : p ∨ ¬p := sorry
example : (((p → q) → p) → p) := sorry

The sorry identifier magically produces a proof of anything, or provides an object of
any data type at all. Of course, it is unsound as a proof method – for example, you can use
it to prove false – and Lean produces severe warnings when files use or import theorems
which depend on it. But it is very useful for building long proofs incrementally. Start
writing the proof from the top down, using sorry to fill in subproofs. Make sure Lean
accepts the term with all the sorry’s; if not, there are errors that you need to correct.
Then go back and replace each sorry with an actual proof, until no more remain.

Here is another useful trick. Instead of using sorry, you can use an underscore _ as
a placeholder. Recall that this tells Lean that the argument is implicit, and should be
filled in automatically. If Lean tries to do so and fails, it returns with an error message
“don’t know how to synthesize placeholder.” This is followed by the type of the term it is
expecting, and all the objects and hypothesis available in the context. In other words, for
each unresolved placeholder, Lean reports the subgoal that needs to be filled at that point.
You can then construct a proof by incrementally filling in these placeholders.

For reference, here are two sample proofs of validities taken from the list above.

open classical

variables p q r : Prop

-- distributivity
example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
iff.intro

(assume H : p ∧ (q ∨ r),
have Hp : p, from and.left H,
or.elim (and.right H)
(assume Hq : q,

show (p ∧ q) ∨ (p ∧ r), from or.inl (and.intro Hp Hq))
(assume Hr : r,

show (p ∧ q) ∨ (p ∧ r), from or.inr (and.intro Hp Hr)))
(assume H : (p ∧ q) ∨ (p ∧ r),
or.elim H
(assume Hpq : p ∧ q,

have Hp : p, from and.left Hpq,
have Hq : q, from and.right Hpq,
show p ∧ (q ∨ r), from and.intro Hp (or.inl Hq))

(assume Hpr : p ∧ r,
have Hp : p, from and.left Hpr,
have Hr : r, from and.right Hpr,
show p ∧ (q ∨ r), from and.intro Hp (or.inr Hr)))

-- an example that requires classical reasoning
example : ¬(p ∧ ¬q) → (p → q) :=
assume H : ¬(p ∧ ¬q),

CHAPTER 3. PROPOSITIONS AND PROOFS 46

assume Hp : p,
show q, from

or.elim (em q)
(assume Hq : q, Hq)
(assume Hnq : ¬q, absurd (and.intro Hp Hnq) H)

4

Quantifiers and Equality

The last chapter introduced you to methods that construct proofs of statements involving
the propositional connectives. In this chapter, we extend the repertoire of logical construc-
tions to include the universal and existential quantifiers, and the equality relation.

The Universal Quantifier
Notice that if A is any type, we can represent a unary predicate p on A as an object of
type A → Prop. In that case, given x : A, p x denotes the assertion that p holds of x.
Similarly, an object r : A → A → Prop denotes a binary relation on A: given x y : A,
r x y denotes the assertion that x is related to y.

The universal quantifier, ∀ x : A, p x is supposed to denote the assertion that “for
every x : A, p x” holds. As with the propositional connectives, in systems of natural
deduction, “forall” is governed by an introduction and elimination rule. Informally, the
introduction rule states:

Given a proof of p x, in a context where x : A is arbitrary, we obtain a proof
∀ x : A, p x.

The elimination rule states:

Given a proof ∀ x : A, p x and any term t : A, we obtain a proof of p t.

As was the case for implication, the propositions-as-types interpretation now comes into
play. Remember the introduction and elimination rules for Pi types:

47

CHAPTER 4. QUANTIFIERS AND EQUALITY 48

Given a term t of type B x, in a context where x : A is arbitrary, we have (λ
x : A, t) : Π x : A, B x.

The elimination rule states:

Given a term s : Π x : A, B x and any term t : A, we have s t : B t.

In the case where p x has type Prop, if we replace Π x : A, B x with ∀ x : A, p x, we
can read these as the correct rules for building proofs involving the universal quantifier.

The Calculus of Inductive Constructions therefore identifies Π and ∀ in this way. If p
is any expression, ∀ x : A, p is nothing more than alternative notation for Π x : A, p,
with the idea that the former is more natural than the latter in cases where where p is a
proposition. Typically, the expression p will depend on x : A. Recall that, in the case of
ordinary function spaces, we could interpret A → B as the special case of Π x : A, B in
which B does not depend on x. Similarly, we can think of an implication p → q between
propositions as the special case of ∀ x : p, q in which the expression q does not depend
on x.

Here is an example of how the propositions-as-types correspondence gets put into prac-
tice.

variables (A : Type) (p q : A → Prop)

example : (∀ x : A, p x ∧ q x) → ∀ y : A, p y :=
assume H : ∀ x : A, p x ∧ q x,
take y : A,
show p y, from and.elim_left (H y)

As a notational convention, we give the universal quantifier the widest scope possible,
so parentheses are needed to limit the quantifier over x to the hypothesis in the example
above. The canonical way to prove ∀ y : A, p y is to take an arbitrary y, and prove p
y. This is the introduction rule. Now, given that H has type ∀ x : A, p x ∧ q x, the
expression H y has type p y ∧ q y. This is the elimination rule. Taking the left conjunct
gives the desired conclusion, p y.

Remember that expressions which differ up to renaming of bound variables are consid-
ered to be equivalent. So, for example, we could have used the same variable, x, in both
the hypothesis and conclusion, or chosen the variable z instead of y in the proof:

example : (∀ x : A, p x ∧ q x) → ∀ y : A, p y :=
assume H : ∀ x : A, p x ∧ q x,
take z : A,
show p z, from and.elim_left (H z)

As another example, here is how we can express the fact that a relation, r, is transitive:

CHAPTER 4. QUANTIFIERS AND EQUALITY 49

variables (A : Type) (r : A → A → Prop)
variable trans_r : ∀ x y z, r x y → r y z → r x z

variables (a b c : A)
variables (Hab : r a b) (Hbc : r b c)

check trans_r -- ∀ (x y z : A), r x y → r y z → r x z
check trans_r a b c
check trans_r a b c Hab
check trans_r a b c Hab Hbc

Think about what is going on here. When we instantiate trans_r at the values a b c, we
end up with a proof of r a b → r b c → r a c. Applying this to the “hypothesis” Hab
: r a b, we get a proof of the implication r b c → r a c. Finally, applying it to the
hypothesis Hbc yields a proof of the conclusion r a c.

In situations like this, it can be tedious to supply the arguments a b c, when they can
be inferred from Hab Hbc. For that reason, it is common to make these arguments implicit:

variables (A : Type) (r : A → A → Prop)
variable (trans_r : ∀ {x y z}, r x y → r y z → r x z)

variables (a b c : A)
variables (Hab : r a b) (Hbc : r b c)

check trans_r
check trans_r Hab
check trans_r Hab Hbc

The advantage is that we can simply write trans_r Hab Hbc as a proof of r a c. The
disadvantage is that Lean does not have enough information to infer the types of the argu-
ments in the expressions trans_r and trans_r Hab. The output of the check command
contains expressions like ?z A r trans_r a b c Hab Hbc. Such an expression indicates an
arbitrary value, that may depend on any of the values listed (in this case, all the variables
in the local context).

Here is an example of how we can carry out elementary reasoning with an equivalence
relation:

variables (A : Type) (r : A → A → Prop)

variable refl_r : ∀ x, r x x
variable symm_r : ∀ {x y}, r x y → r y x
variable trans_r : ∀ {x y z}, r x y → r y z → r x z

example (a b c d : A) (Hab : r a b) (Hcb : r c b) (Hcd : r c d) : r a d :=
trans_r (trans_r Hab (symm_r Hcb)) Hcd

You might want to try to prove some of these equivalences:

CHAPTER 4. QUANTIFIERS AND EQUALITY 50

variables (A : Type) (p q : A → Prop)

example : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := sorry
example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := sorry
example : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x := sorry

You should also try to understand why the reverse implication is not derivable in the last
example.

It is often possible to bring a component outside a universal quantifier, when it does
not depend on the quantified variable (one direction of the second of these requires classical
logic):

variables (A : Type) (p q : A → Prop)
variable r : Prop

example : A → ((∀ x : A, r) ↔ r) := sorry
example : (∀ x, p x ∨ r) ↔ (∀ x, p x) ∨ r := sorry
example : (∀ x, r → p x) ↔ (r → ∀ x, p x) := sorry

As a final example, consider the “barber paradox”, that is, the claim that in a certain
town there is a (male) barber that shaves all and only the men who do not shave themselves.
Prove that this implies a contradiction:

variables (men : Type) (barber : men) (shaves : men → men → Prop)

example (H : ∀ x : men, shaves barber x ↔ ¬shaves x x) : false := sorry

It is the typing rule for Pi types, and the universal quantifier in particular, that dis-
tinguishes Prop from other types. Suppose we have A : Type.{i} and B : Type.{j},
where the expression B may depend on a variable x : A. Then Π x : A, B is an element
of Type.{imax i j}, where imax i j is the maximum of i and j if j is not 0, and 0
otherwise.

The idea is as follows. If j is not 0, then Π x : A, B is an element of Type.{max i j}.
In other words, the type of dependent functions from A to B “lives” in the universe with
smallest index greater-than or equal to the indices of the universes of A and B. Suppose,
however, that B is of Type.{0}, that is, an element of Prop. In that case, Π x : A, B is an
element of Type.{0} as well, no matter which type universe A lives in. In other words, if B
is a proposition depending on A, then ∀ x : A, B is again a proposition. This reflects the
interpretation of Prop as the type of propositions rather than data, and it is what makes
Prop impredicative. In contrast to the standard kernel, such a Prop is absent from Lean’s
kernel for homotopy type theory.

The term “predicative” stems from foundational developments around the turn of the
twentieth century, when logicians such as Poincaré and Russell blamed set-theoretic para-
doxes on the “vicious circles” that arise when we define a property by quantifying over a

CHAPTER 4. QUANTIFIERS AND EQUALITY 51

collection that includes the very property being defined. Notice that if A is any type, we
can form the type A → Prop of all predicates on A (the “power type of A”). The impred-
icativity of Prop means that we can form propositions that quantify over A → Prop. In
particular, we can define predicates on A by quantifying over all predicates on A, which is
exactly the type of circularity that was once considered problematic.

Equality
Let us now turn to one of the most fundamental relations defined in Lean’s library, namely,
the equality relation. In Chapter Inductive Types, we will explain how equality is defined,
from the primitives of Lean’s logical framework. In the meanwhile, here we explain how to
use it.

Of course, a fundamental property of equality is that it is an equivalence relation:

check eq.refl -- ∀ (a : ?A), a = a
check eq.symm -- ?a = ?b → ?b = ?a
check eq.trans -- ?a = ?b → ?b = ?c → ?a = ?c

Thus, for example, we can specialize the example from the previous section to the equality
relation:

variables (A : Type) (a b c d : A)
premises (Hab : a = b) (Hcb : c = b) (Hcd : c = d)

example : a = d :=
eq.trans (eq.trans Hab (eq.symm Hcb)) Hcd

If we “open” the eq namespace, the names become shorter:

open eq

example : a = d := trans (trans Hab (symm Hcb)) Hcd

Lean even defines convenient notation for writing proofs like this:

variables (A : Type) (a b c d : A)
premises (Hab : a = b) (Hcb : c = b) (Hcd : c = d)

-- BEGIN
open eq.ops

example : a = d := Hab · Hcb ¹ · Hcd

CHAPTER 4. QUANTIFIERS AND EQUALITY 52

You can use \tr to enter the transitivity dot, and \sy to enter the inverse/symmetry
symbol.

Reflexivity is more powerful than it looks. Recall that terms in the Calculus of Inductive
Constructions have a computational interpretation, and that the logical framework treats
terms with a common reduct as the same. As a result, some nontrivial identities can be
proved by reflexivity:

import data.nat data.prod
open nat prod

variables (A B : Type)

example (f : A → B) (a : A) : (λ x, f x) a = f a := eq.refl _
example (a : A) (b : A) : pr1 (a, b) = a := eq.refl _
example : 2 + 3 = (5 : N) := eq.refl _

This feature of the framework is so important that the library defines a notation rfl for
eq.refl _:

example (f : A → B) (a : A) : (λ x, f x) a = f a := rfl
example (a : A) (b : A) : pr1 (a, b) = a := rfl
example : 2 + 3 = (5 : N) := rfl

Equality is much more than an equivalence relation, however. It has the important
property that every assertion respects the equivalence, in the sense that we can substitute
equal expressions without changing the truth value. That is, given H1 : a = b and H2 :
P a, we can construct a proof for P b using substitution: eq.subst H1 H2.

example (A : Type) (a b : A) (P : A → Prop) (H1 : a = b) (H2 : P a) : P b :=
eq.subst H1 H2

example (A : Type) (a b : A) (P : A → Prop) (H1 : a = b) (H2 : P a) : P b :=
H1 ▶ H2

The triangle in the second presentation is, once again, made available by opening eq.ops,
and you can use \t to enter it. The term H1 ▶ H2 is just notation for eq.subst H1 H2.
This notation is used extensively in the Lean standard library.

Here is an example of a calculation in the natural numbers that uses substitution
combined with associativity, commutativity, and distributivity of the natural numbers. Of
course, carrying out such calculations require being able to invoke such supporting theorems.
You can find a number of identities involving the natural numbers in the associated library
files, for example, in the module data.nat.basic. In the next chapter, we will have more to
say about how to find theorems in Lean’s library.

https://github.com/leanprover/lean/blob/master/library/data/nat/basic.lean

CHAPTER 4. QUANTIFIERS AND EQUALITY 53

import data.nat
open nat eq.ops algebra

example (x y : N) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
have H1 : (x + y) * (x + y) = (x + y) * x + (x + y) * y, from !left_distrib,
have H2 : (x + y) * (x + y) = x * x + y * x + (x * y + y * y),

from (right_distrib x y x) ▶ !right_distrib ▶ H1,
!add.assoc ¹ ▶ H2

The exclamation mark infers explicit arguments to a theorem from the context. For
more information, see Section More on Implicit Arguments. In the statement of the exam-
ple, remember that addition implicitly associates to the left, so the last step of the proof
puts the right-hand side of H2 in the required form.

It is often important to be able to carry out substitutions like this by hand, but it is
tedious to prove examples like the one above in this way. Fortunately, Lean provides an
environment that provides better support for such calculations, which we will turn to now.

The Calculation Environment
A calculational proof is just a chain of intermediate results that are meant to be composed
by basic principles such as the transitivity of equality. In Lean, a calculation proof starts
with the keyword calc, and has the following syntax:

calc
<expr>_0 'op_1' <expr>_1 ':' <proof>_1
'...' 'op_2' <expr>_2 ':' <proof>_2
...
'...' 'op_n' <expr>_n ':' <proof>_n

Each <proof>_i is a proof for <expr>_{i-1} op_i <expr>_i. The <proof>_i may also
be of the form { <pr> }, where <pr> is a proof for some equality a = b. The form { <pr>
} is just syntactic sugar for eq.subst <pr> (eq.refl <expr>_{i-1}) In other words, we
are claiming we can obtain <expr>_i by replacing a with b in <expr>_{i-1}.

Here is an example:

import data.nat
open nat algebra

variables (a b c d e : nat)
variable H1 : a = b
variable H2 : b = c + 1
variable H3 : c = d
variable H4 : e = 1 + d

theorem T : a = e :=
calc

a = b : H1

CHAPTER 4. QUANTIFIERS AND EQUALITY 54

... = c + 1 : H2

... = d + 1 : {H3}

... = 1 + d : add.comm d 1

... = e : eq.symm H4

The calc command can be configured for any relation that supports some form of
transitivity. It can even combine different relations.

import data.nat
open nat algebra

theorem T2 (a b c : nat) (H1 : a = b) (H2 : b = c + 1) : a ̸= 0 :=
calc

a = b : H1
... = c + 1 : H2
... = succ c : add_one c
... ̸= 0 : succ_ne_zero c

Lean offers some nice additional features. If the justification for a line of a calculational
proof is foo, Lean will try adding implicit arguments if foo alone fails to do the job. If
that doesn’t work, Lean will try the symmetric version, foo ¹, again adding arguments if
necessary. If that doesn’t work, Lean proceeds to try {foo} and {foo ¹}, again, adding
arguments if necessary. This can simplify the presentation of a calc proof considerably.
Consider, for example, the following proof of the identity in the last section:

example (x y : N) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
calc

(x + y) * (x + y) = (x + y) * x + (x + y) * y : left_distrib
... = x * x + y * x + (x + y) * y : right_distrib
... = x * x + y * x + (x * y + y * y) : right_distrib
... = x * x + y * x + x * y + y * y : add.assoc

As an exercise, we suggest carrying out a similar expansion of (x - y) * (x + y),
using in the appropriate order the theorems left_distrib, mul.comm and add.comm and
the theorems mul_sub_right_distrib and add_sub_add_left in the file data.nat.sub.
Note that this exercise is slightly more involved than the previous example, because the
subtraction on natural numbers is truncated, so that n - m is equal to 0 when m is greater
than or equal to n.

The Simplifier
[TO DO: this section needs to be written. Emphasize that the simplifier can be used in
conjunction with calc.]

https://github.com/leanprover/lean/blob/master/library/data/nat/sub.lean

CHAPTER 4. QUANTIFIERS AND EQUALITY 55

The Existential Quantifier
Finally, consider the existential quantifier, which can be written as either exists x : A,
p x or ∃ x : A, p x. Both versions are actually notationally convenient abbreviations
for a more long-winded expression, Exists (λ x : A, p x), defined in Lean’s library.

As you should by now expect, the library includes both an introduction rule and an
elimination rule. The introduction rule is straightforward: to prove ∃ x : A, p x, it
suffices to provide a suitable term t and a proof of p t. Here are some examples:

import data.nat
open nat

example : ∃ x : N, x > 0 :=
have H : 1 > 0, from succ_pos 0,
exists.intro 1 H

example (x : N) (H : x > 0) : ∃ y, y < x :=
exists.intro 0 H

example (x y z : N) (Hxy : x < y) (Hyz : y < z) : ∃ w, x < w ∧ w < z :=
exists.intro y (and.intro Hxy Hyz)

check @exists.intro

Note that exists.intro has implicit arguments: Lean has to infer the predicate p : A
→ Prop in the conclusion ∃ x, p x. This is not a trivial affair. For example, if we have
have Hg : g 0 0 = 0 and write exists.intro 0 Hg, there are many possible values for
the predicate p, corresponding to the theorems ∃ x, g x x = x, ∃ x, g x x = 0, ∃ x, g
x 0 = x, etc. Lean uses the context to infer which one is appropriate. This is illustrated
in the following example, in which we set the option pp.implicit to true to ask Lean’s
pretty-printer to show the implicit arguments.

import data.nat
open nat

variable g : N → N → N
variable Hg : g 0 0 = 0

theorem gex1 : ∃ x, g x x = x := exists.intro 0 Hg
theorem gex2 : ∃ x, g x 0 = x := exists.intro 0 Hg
theorem gex3 : ∃ x, g 0 0 = x := exists.intro 0 Hg
theorem gex4 : ∃ x, g x x = 0 := exists.intro 0 Hg

set_option pp.implicit true -- display implicit arguments
check gex1
check gex2
check gex3
check gex4

CHAPTER 4. QUANTIFIERS AND EQUALITY 56

We can view exists.intro as an information-hiding operation: we are “hiding” the
witness to the body of the assertion. The existential elimination rule, exists.elim, per-
forms the opposite operation. It allows us to prove a proposition q from ∃ x : A, p x,
by showing that q follows from p w for an arbitrary value w. Roughly speaking, since we
know there is an x satisfying p x, we can give it a name, say, w. If q does not mention
w, then showing that q follows from p w is tantamount to showing the q follows from the
existence of any such x. It may be helpful to compare the exists-elimination rule to the
or-elimination rule: the assertion ∃ x : A, p x can be thought of as a big disjunction of
the propositions p a, as a ranges over all the elements of A.

Notice that exists introduction and elimination are very similar to the sigma intro-
duction sigma.mk and elimination. The difference is that given a : A and h : p a,
exists.intro a h has type (∃ x : A, p x) : Prop and sigma.mk a h has type (Σ x :
A, p x) : Type. The similarity between ∃ and Σ is another instance of the Curry-Howard
isomorphism.

In the following example, we define even a as ∃ b, a = 2*b, and then we show that
the sum of two even numbers is an even number.

import data.nat
open nat algebra

definition is_even (a : nat) := ∃ b, a = 2*b

theorem even_plus_even {a b : nat} (H1 : is_even a) (H2 : is_even b) : is_even (a + b) :=
exists.elim H1 (fun (w1 : nat) (Hw1 : a = 2*w1),
exists.elim H2 (fun (w2 : nat) (Hw2 : b = 2*w2),

exists.intro (w1 + w2)
(calc
a + b = 2*w1 + b : Hw1

... = 2*w1 + 2*w2 : Hw2

... = 2*(w1 + w2) : left_distrib)))

Lean provides syntactic sugar for exists.elim. The expression

obtain <var1> <var2>, from <expr1>,
<expr2>

translates to exists.elim <expr1> (λ <var1> <var2>, <expr2>). With this syntax,
the example above can be presented in a more natural way:

theorem even_plus_even {a b : nat} (H1 : is_even a) (H2 : is_even b) :
is_even (a + b) :=

obtain (w1 : nat) (Hw1 : a = 2*w1), from H1,
obtain (w2 : nat) (Hw2 : b = 2*w2), from H2,
exists.intro (w1 + w2)

(calc
a + b = 2*w1 + b : Hw1

CHAPTER 4. QUANTIFIERS AND EQUALITY 57

... = 2*w1 + 2*w2 : Hw2

... = 2*(w1 + w2) : left_distrib)

Just as the constructive “or” is stronger than the classical “or,” so, too, is the construc-
tive “exists” stronger than the classical “exists”. For example, the following implication
requires classical reasoning because, from a constructive standpoint, knowing that it is not
the case that every x satisfies ¬ p is not the same as having a particular x that satisfies p.

open classical

variables (A : Type) (p : A → Prop)

example (H : ¬ ∀ x, ¬ p x) : ∃ x, p x :=
by_contradiction

(assume H1 : ¬ ∃ x, p x,
have H2 : ∀ x, ¬ p x, from

take x,
assume H3 : p x,
have H4 : ∃ x, p x, from exists.intro x H3,
show false, from H1 H4,

show false, from H H2)

What follows are some common identities involving the existential quantifier. We en-
courage you to prove as many as you can. We are also leaving it to you to determine which
are nonconstructive, and hence require some form of classical reasoning.

open classical

variables (A : Type) (p q : A → Prop)
variable a : A
variable r : Prop

example : (∃ x : A, r) → r := sorry
example : r → (∃ x : A, r) := sorry
example : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r := sorry
example : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := sorry

example : (∀ x, p x) ↔ ¬ (∃ x, ¬ p x) := sorry
example : (∃ x, p x) ↔ ¬ (∀ x, ¬ p x) := sorry
example : (¬ ∃ x, p x) ↔ (∀ x, ¬ p x) := sorry
example : (¬ ∀ x, p x) ↔ (∃ x, ¬ p x) := sorry

example : (∀ x, p x → r) ↔ (∃ x, p x) → r := sorry
example : (∃ x, p x → r) ↔ (∀ x, p x) → r := sorry
example : (∃ x, r → p x) ↔ (r → ∃ x, p x) := sorry

Notice that the declaration variable a : A amounts to the assumption that there is at
least one element of type A. This assumption is needed in the second example, as well as
in the last two.

Here are solutions to two of the more difficult ones:

CHAPTER 4. QUANTIFIERS AND EQUALITY 58

example : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) :=
iff.intro

(assume H : ∃ x, p x ∨ q x,
obtain a (H1 : p a ∨ q a), from H,
or.elim H1
(assume Hpa : p a, or.inl (exists.intro a Hpa))
(assume Hqa : q a, or.inr (exists.intro a Hqa)))

(assume H : (∃ x, p x) ∨ (∃ x, q x),
or.elim H
(assume Hp : ∃ x, p x,

obtain a Hpa, from Hp,
exists.intro a (or.inl Hpa))

(assume Hq : ∃ x, q x,
obtain a Hqa, from Hq,
exists.intro a (or.inr Hqa)))

example : (∃ x, p x → r) ↔ (∀ x, p x) → r :=
iff.intro

(assume H1 : ∃ x, p x → r,
assume H2 : ∀ x, p x,
obtain b (Hb : p b → r), from H1,
show r, from Hb (H2 b))

(assume H1 : (∀ x, p x) → r,
show ∃ x, p x → r, from
by_cases

(assume Hap : ∀ x, p x, exists.intro a (λ H', H1 Hap))
(assume Hnap : ¬ ∀ x, p x,
by_contradiction

(assume Hnex : ¬ ∃ x, p x → r,
have Hap : ∀ x, p x, from

take x,
by_contradiction
(assume Hnp : ¬ p x,

have Hex : ∃ x, p x → r,
from exists.intro x (assume Hp, absurd Hp Hnp),

show false, from Hnex Hex),
show false, from Hnap Hap)))

More on the Proof Language
We have seen that keywords like assume, take, have, show, and obtain make it possible
to write formal proof terms that mirror the structure of informal mathematical proofs.
In this section, we discuss some additional features of the proof language that are often
convenient.

To start with, we can use anonymous “have” expressions to introduce an auxiliary goal
without having to label it. We can refer to the last expression introduced in this way using
the keyword this:

import data.nat
open nat algebra

CHAPTER 4. QUANTIFIERS AND EQUALITY 59

variable f : N → N
premise H : ∀ x : N, f x ≤ f (x + 1)

example : f 0 ≤ f 3 :=
have f 0 ≤ f 1, from H 0,
have f 0 ≤ f 2, from le.trans this (H 1),
show f 0 ≤ f 3, from le.trans this (H 2)

Often proofs move from one fact to the next, so this can be effective in eliminating the
clutter of lots of labels.

One can also refer to any element or hypothesis in the context, anonymous or not, by
enclosing the type in backticks:

example : f 0 ≤ f 3 :=
have f 0 ≤ f 1, from H 0,
have f 0 ≤ f 2, from le.trans `f 0 ≤ f 1` (H 1),
show f 0 ≤ f 3, from le.trans `f 0 ≤ f 2` (H 2)

In the last line, for example, the expression `f 0 ≤ f 2` means “find any element of the
context that has type f 0 ≤ f 2.” In other words, we state the assertion rather than
name the variable that witnesses its truth. This can be done anywhere later in the proof:

example : f 0 ≤ f 3 :=
have f 0 ≤ f 1, from H 0,
have f 1 ≤ f 2, from H 1,
have f 2 ≤ f 3, from H 2,
show f 0 ≤ f 3, from le.trans `f 0 ≤ f 1` (le.trans `f 1 ≤ f 2` `f 2 ≤ f 3`)

The suppose keyword acts as an anonymous assume:

example : f 0 ≥ f 1 → f 0 = f 1 :=
suppose f 0 ≥ f 1,
show f 0 = f 1, from le.antisymm (H 0) this

Notice that there is an asymmetry: you can use have with or without a label, but if you do
not wish to name the assumption, you must use suppose rather than assume. The reason
is that Lean allows us to write assume H to introduce a hypothesis without specifying it,
leaving it to the system to infer to relevant assumption. An anonymous assume would thus
lead to ambiguities when parsing expressions.

As with the anonymous have, when you use suppose to introduce an assumption, that
assumption can also be invoked later in the proof by enclosing it in backticks.

example : f 0 ≥ f 1 → f 1 ≥ f 2 → f 0 = f 2 :=
suppose f 0 ≥ f 1,
suppose f 1 ≥ f 2,
have f 0 ≥ f 2, from le.trans `f 2 ≤ f 1` `f 1 ≤ f 0`,

CHAPTER 4. QUANTIFIERS AND EQUALITY 60

have f 0 ≤ f 2, from le.trans (H 0) (H 1),
show f 0 = f 2, from le.antisymm this `f 0 ≥ f 2`

Notice that le.antisymm is the assertion that if a ≤ b and b ≤ a then a = b, and a ≥
b is definitionally equal to b ≤ a.

One can also do an anonymous assume by enclosing the statement in backticks.

example : f 0 ≥ f 1 → f 1 ≥ f 2 → f 0 = f 2 :=
assume `f 0 ≥ f 1`,
assume `f 1 ≥ f 2`,
have f 0 ≥ f 2, from le.trans `f 2 ≤ f 1` `f 1 ≤ f 0`,
have f 0 ≤ f 2, from le.trans (H 0) (H 1),
show f 0 = f 2, from le.antisymm this `f 0 ≥ f 2`

This is slightly weaker than using suppose, because we can no longer use the identifier
this. But the mechanism is more general: it can be used with other binders, like take
and obtains.

If more than one element of the context has the named type, the expression is ambigu-
ous:

definition imp_self (p : Prop) : p → p :=
assume `p`, `p`

print imp_self

definition imp_self2 (p : Prop) : p → p → p :=
assume `p` `p`, `p`

print imp_self2

The output shows that in the second example, it is the second argument that is chosen.
Using anonymous binders when data is involved looks somewhat odd:

definition idnat : N → N :=
take `N`, `N`

print idnat

definition idnat2 : N → N → N :=
take `N` `N`, `N`

print idnat2
eval idnat2 0 1 -- returns 1

But with propositions it is usually quite natural. Here is an example of an anonymous
binder used with the obtain construction, continuing the examples above.

CHAPTER 4. QUANTIFIERS AND EQUALITY 61

variable f : N → N

example (H : ∀ x : N, f x ≤ f (x + 1)) (H' : ∃ x, f (x + 1) ≤ f x) :
∃ x, f (x + 1) = f x :=

obtain x `f (x + 1) ≤ f x`, from H',
exists.intro x

(show f (x + 1) = f x, from le.antisymm `f (x + 1) ≤ f x` (H x))

The following proof that the square root of two is irrational can be found in the standard
library. It provides a nice example of the way that proof terms can be structured and made
readable using the devices we have discussed here.

import data.nat
open nat

theorem sqrt_two_irrational {a b : N} (co : coprime a b) : a^2 ̸= 2 * b^2 :=
assume H : a^2 = 2 * b^2,
have even (a^2),

from even_of_exists (exists.intro _ H),
have even a,

from even_of_even_pow this,
obtain (c : N) (aeq : a = 2 * c),

from exists_of_even this,
have 2 * (2 * c^2) = 2 * b^2,

by rewrite [-H, aeq, *pow_two, mul.assoc, mul.left_comm c],
have 2 * c^2 = b^2,

from eq_of_mul_eq_mul_left dec_trivial this,
have even (b^2),

from even_of_exists (exists.intro _ (eq.symm this)),
have even b,

from even_of_even_pow this,
have 2 | gcd a b,

from dvd_gcd (dvd_of_even `even a`) (dvd_of_even `even b`),
have 2 | (1 : N),

by rewrite [gcd_eq_one_of_coprime co at this]; exact this,
show false, from absurd `2 | 1` dec_trivial

5

Interacting with Lean

You are now familiar with the fundamentals of dependent type theory, both as a language
for defining mathematical objects and a language for constructing proofs. The one thing
you are missing is a mechanism for defining new data types. We will fill this gap in the next
chapter, which introduces the notion of an inductive data type. But first, in this chapter,
we take a break from the mechanics of type theory to explore some pragmatic aspects of
interacting with Lean.

Displaying Information
There are a number of ways in which you can query Lean for information about its current
state and the objects and theorems that are available in the current context. You have
already seen two of the most common ones, check and eval. Remember that check is often
used in conjunction with the @ operator, which makes all of the arguments to a theorem or
definition explicit. In addition, you can use the print command to get information about
any identifier. If the identifier denotes a definition or theorem, Lean prints the type of the
symbol, and its definition; if it is a constant or axiom, Lean indicates that fact, and shows
the type.

import data.nat

-- examples with equality
check eq
check @eq
check eq.symm
check @eq.symm

print eq.symm

62

CHAPTER 5. INTERACTING WITH LEAN 63

-- examples with and
check and
check and.intro
check @and.intro

-- examples with addition
open nat
check add
check @add
eval add 3 2
print definition add

-- a user-defined function
definition foo {A : Type} (x : A) : A := x

check foo
check @foo
eval foo
eval (foo @nat.zero)
print foo

There are other useful print commands:

print notation : display all notation
print notation <tokens> : display notation using any of the tokens
print axioms : display assumed axioms
print options : display options set by user or emacs mode
print prefix <namespace> : display all declarations in the namespace
print coercions : display all coercions
print coercions <source> : display only the coercions from <source>
print classes : display all classes
print instances <class name> : display all instances of the given class
print fields <structure> : display all "fields" of a structure

We will discuss classes, instances, and structures in Chapter Type Classes. Here are exam-
ples of how the print commands are used:

import standard algebra.ring
open prod sum int nat algebra

print notation
print notation + * -
print axioms
print options
print prefix nat
print prefix nat.le
print coercions
print coercions num
print classes
print instances ring
print fields ring

CHAPTER 5. INTERACTING WITH LEAN 64

Another useful command, although the implementation is still rudimentary at this
stage, is the find decl command. This can be used to find theorems whose conclusion
matches a given pattern. The syntax is as follows:

find_decl <pattern> [, filter]*

where <pattern> is an expression with “holes” (underscores), and a filter is of the form

+ id (id is a substring of the declaration)
- id (id is not a substring of the declaration)

id (id is a substring of the declaration)

For example:

import data.nat
open nat

find_decl ((_ * _) = (_ * _))
find_decl (_ * _) = _, +assoc
find_decl (_ * _) = _, -assoc

find_decl _ < succ _, +imp, -le

Setting Options
Lean maintains a number of internal variables that can be set by users to control its
behavior. The syntax for doing so is as follows:

set_option <name> <value>

One very useful family of options controls the way Lean’s pretty- printer displays terms.
The following options take an input of true or false:

pp.implicit : display implicit arguments
pp.universes : display hidden universe parameters
pp.coercions : show coercions
pp.notation : display output using defined notations
pp.beta : beta reduce terms before displaying them

In Lean, coercions can be inserted automatically to cast an element of one data type to
another, for example, to cast an element of nat to an element of int. We will say more
about them later in this chapter. This list is not exhaustive; you can see a complete list
by typing set_option pp. and then using tab-completion in the Emacs mode for Lean,
also discussed below.

As an example, the following settings yield much longer output:

CHAPTER 5. INTERACTING WITH LEAN 65

import data.nat
open nat

set_option pp.implicit true
set_option pp.universes true
set_option pp.notation false
set_option pp.numerals false

check 2 + 2 = 4
eval (λ x, x + 2) = (λ x, x + 3)

set_option pp.beta true
check (λ x, x + 1) 1

Pretty printing additional information is often very useful when you are debugging a proof,
or trying to understand a cryptic error message. Too much information can be overwhelm-
ing, though, and Lean’s defaults are generally sufficient for ordinary interactions.

Using the Library
To use Lean effectively you will inevitably need to make use of definitions and theorems in
the library. Recall that the import command at the beginning of a file imports previously
compiled results from other files, and that importing is transitive; if you import foo and
foo imports bar, then the definitions and theorems from bar are available to you as well.
But the act of opening a namespace — which provides shorter names, notations, rewrite
rules, and more — does not carry over. In each file, you need to open the namespaces you
wish to use.

The command import standard imports the essential parts of the standard library,
and by now you have seen many of the namespaces you will need. For example, you
should open nat for notation when you are working with the natural numbers, and open
int when you are working with the integers. In general, however, it is important for you
to be familiar with the library and its contents, so you know what theorems, definitions,
notations, and resources are available to you. Below we will see that Lean’s Emacs mode
can also help you find things you need, but studying the contents of the library directly is
often unavoidable.

Lean has two libraries. Here we will focus on the standard library, which offers a
conventional mathematical framework. We will discuss the library for homotopy type
theory in a later chapter.

There are a number of ways to explore the contents of the standard library. You can
find the file structure online, on github:

https://github.com/leanprover/lean/tree/master/library

You can see the contents of the directories and files using github’s browser interface. If
you have installed Lean on your own computer, you can find the library in the lean folder,

https://github.com/leanprover/lean/tree/master/library

CHAPTER 5. INTERACTING WITH LEAN 66

and explore it with your file manager. Comment headers at the top of each file provide
additional information.

Alternatively, there are “markdown” files in the library that provide links to the same
files but list them in a more natural order, and provide additional information and anno-
tations.

https://github.com/leanprover/lean/blob/master/library/library.md

You can again browse these through the github interface, or with a markdown reader on
your computer.

Lean’s library developers follow general naming guidelines to make it easier to guess
the name of a theorem you need, or to find it using tab completion in Lean’s Emacs mode,
which is discussed in the next section. To start with, common “axiomatic” properties of
an operation like conjunction or multiplication are put in a namespace that begins with
the name of the operation:

import standard algebra.ordered_ring
open nat algebra

check and.comm
check mul.comm
check and.assoc
check mul.assoc
check @mul.left_cancel -- multiplication is left cancelative

In particular, this includes intro and elim operations for logical connectives, and proper-
ties of relations:

check and.intro
check and.elim
check or.intro_left
check or.intro_right
check or.elim

check eq.refl
check eq.symm
check eq.trans

For the most part, however, we rely on descriptive names. Often the name of theorem
simply describes the conclusion:

check succ_ne_zero
check @mul_zero
check @mul_one
check @sub_add_eq_add_sub
check @le_iff_lt_or_eq

https://github.com/leanprover/lean/blob/master/library/library.md

CHAPTER 5. INTERACTING WITH LEAN 67

If only a prefix of the description is enough to convey the meaning, the name may be made
even shorter:

check @neg_neg
check pred_succ

Sometimes, to disambiguate the name of theorem or better convey the intended reference,
it is necessary to describe some of the hypotheses. The word “of” is used to separate these
hypotheses:

check lt_of_succ_le
check @lt_of_not_ge
check @lt_of_le_of_ne
check @add_lt_add_of_lt_of_le

Sometimes abbreviations or alternative descriptions are easier to work with. For example,
we use pos, neg, nonpos, nonneg rather than zero_lt, lt_zero, le_zero, and zero_le.

check @mul_pos
check @mul_nonpos_of_nonneg_of_nonpos
check @add_lt_of_lt_of_nonpos
check @add_lt_of_nonpos_of_lt

Sometimes the word “left” or “right” is helpful to describe variants of a theorem.

check @add_le_add_left
check @add_le_add_right
check @le_of_mul_le_mul_left
check @le_of_mul_le_mul_right

Lean’s Emacs Mode
This tutorial is designed to be read alongside Lean’s web-browser interface, which runs a
Javascript-compiled version of Lean inside your web browser. But there is a much more
powerful interface to Lean that runs as a special mode in the Emacs text editor. Our goal
in this section is to consider some of the advantages and features of the Emacs interface.

If you have never used the Emacs text editor before, you should spend some time
experimenting with it. Emacs is an extremely powerful text editor, but it can also be
overwhelming. There are a number of introductory tutorials on the web. See, for example:

• A Guided Tour of Emacs

• Absolute Beginner’s Guide to Emacs

http://www.gnu.org/software/emacs/tour/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/

CHAPTER 5. INTERACTING WITH LEAN 68

• Introduction to Emacs Course (PDF)

You can get pretty far simply using the menus at the top of the screen for basic editing
and file management. Those menus list keyboard-equivalents for the commands. Notation
like “C-x”, short for “control x,” means “hold down the control key while typing x.” The
notation “M-x”, short for “Meta x,” means “hold down the Alt key while typing x,” or,
equivalently, “press the Esc key, followed by x.” For example, the “File” menu lists “C-c
C-s” as a keyboard-equivalent for the “save file” command.

There are a number of benefits to using the native version of Lean instead of the web
interface. Perhaps the most important is file management. The web interface imports the
entire standard library internally, which is why some examples in this tutorial have to put
examples in a namespace, “hide,” to avoid conflicting with objects already defined in the
standard library. Moreover, the web interface only operates on one file at a time. Using
the Emacs editor, you can create and edit Lean theory files anywhere on your file system,
as with any editor or word processor. From these files, you can import pieces of the library
at will, as well as your own theories, defined in separate files.

To use the Emacs with Lean, you simply need to create a file with the extension “.lean”
and edit it. (For files that should be checked in the homotopy type theory framework, use
“.hlean” instead.) For example, you can create a file by typing emacs my_file.lean in a
terminal window, in the directory where you want to keep the file. Assuming everything
has been installed correctly, Emacs will start up in Lean mode, already checking your file
in the background.

You can then start typing, or copy any of the examples in this tutorial. (In the latter
case, make sure you include the import and open commands that are sometimes hidden
in the text.) Lean mode offers syntax highlighting, so commands, identifiers, and so on
are helpfully color-coded. Any errors that Lean detects are subtly underlined in red, and
the editor displays an exclamation mark in the left margin. As you continue to type and
eliminate errors, these annotations magically disappear.

If you put the cursor on a highlighted error, Emacs displays the error message in at the
bottom of the frame. Alternatively, if you type C-c ! l while in Lean mode, Emacs opens
a new window with a list of compilation errors. Lean relies on an Emacs mode, Flycheck, for
this functionality, as evidenced by the letters “FlyC” that appear in the Emacs information
line. An asterisk next to these letters indicates that Flycheck is actively checking the file,
using Lean. Flycheck offers a number of commands that begin with C-c !. For example,
C-c ! n moves the cursor to the next error, and C-c ! p moves the cursor to the previous
error. You can get to a help menu that lists these key bindings by clicking on the “FlyC”
tag.

It may be disconcerting to see a perfectly good proof suddenly “break” when you change
a single character. Moreover, changes can introduce errors downstream. But the error
messages vanish quickly when correctness is restored. Lean is quite fast and caches previous
work to speed up compilation, and changes you make are registered almost instantaneously.

http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/earlier/Emacs/files/course.pdf

CHAPTER 5. INTERACTING WITH LEAN 69

The Emacs Lean mode also maintains a continuous dialog with a background Lean
process and uses it to present useful information to you. For example, if you put your
cursor on any identifier — a theorem name, a defined symbol, or a variable — Emacs
displays its type in the information line at the bottom. If you put the cursor on the
opening parenthesis of an expression, Emacs displays the type of the expression.

This works even for implicit arguments. If you put your cursor on an underscore symbol,
then, assuming Lean’s elaborator was successful in inferring the value, Emacs shows you
that value and its type. Typing “C-c C-f” replaces the underscore with the inferred value.
In cases where Lean is unable to infer a value of an implicit argument, the underscore
is highlighted, and the error message indicates the type of the “hole” that needs to be
filled. This can be extremely useful when constructing proofs incrementally. One can start
typing a “proof sketch,” using either sorry or an underscore for details you intend to fill in
later. Assuming the proof is correct modulo these missing pieces of information, the error
message at an unfilled underscore tells you the type of the term you need to construct,
typically an assertion you need to justify.

The Lean mode supports tab completion. In a context where Lean expects an identifier
(e.g. a theorem name or a defined symbol), if you start typing and then hit the tab key,
a popup window suggests possible matches or near-matches for the expression you have
typed. This helps you find the theorems you need without having to browse the library.
You can also press tab after an import command, to see a list of possible imports, or after
the set_option command, to see a list of options.

If you put your cursor on an identifier and type “C-c C-p”, Lean prints the definition of
that identifier in a separate buffer. If you put your cursor on an identifier that is defined in
Lean’s library and hit “M-.”, Emacs will take you to the identifier’s definition in the library
file itself. This works even in an autocompletion popup window: if you start typing an
identifier, press the tab key, choose a completion from the list of options, and press “M-.”,
you are taken to the symbol’s definition. When you are done, pressing “M-*” takes you
back to your original position.

There are other useful tricks. If you see some notation in a Lean file and you want to
know how to enter it from the keyboard, put the cursor on the symbol and type “C-c C-k”.
You can set common Lean options with “C-c C-o”, and you can execute a Lean command
using “C-c C-e”. These commands and others are summarized in the online documentation:

https://github.com/leanprover/lean/blob/master/src/emacs/README.md

If for some reason the Lean background process does not seem to be responding (for
example, the information line no longer shows you type information), type “C-c C-r”,
or “M-x lean-server-restart-process”, or choose “restart lean process” from the Lean menu,
and with luck that will set things right again.

This is a good place to mention another trick that is sometimes useful when editing
long files. In Lean, the exit command halts processing of the file abruptly. If you are

https://github.com/leanprover/lean/blob/master/src/emacs/README.md

CHAPTER 5. INTERACTING WITH LEAN 70

making changes at the top of a long file and want to defer checking of the remainder of the
file until you are done making those changes, you can temporarily insert an exit.

Projects
At this point, it will be helpful to convey more information about the inner workings of
Lean. A .lean file (or .hlean file, if you are working on homotopy type theory) consists
of instructions that tell Lean how to construct formal terms in dependent type theory.
“Processing” this file is a matter of filling in missing or implicit information, constructing
the relevant terms, and sending them to the type checker to confirm that they are well-
formed and have the specified types. This is analogous to the compilation process for
a programming language: the .lean or .hlean file contains the source code that is then
compiled down to machine representations of the desired formal objects. Lean stores the
output of the compilation process in files with the extension “.olean”, for “object Lean”.

It is these files that are loaded by the import command. When Lean processes an
import command, it looks for the relevant .olean files in standard places. By default, the
search path consists of the root of the standard library (or the hott library, if the file is
a .hlean file) and the current directory. You can specify subdirectories using periods in
the module name: for example, import foo.bar.baz looks for the file “foo/bar/baz.olean”
relative to any of the locations listed in the search path. A leading period, as in import
.foo.bar, indicates that the .olean file in question is specified relative to the current
directory. Two leading periods, as in import ..foo.bar, indicates that the address is
relative to the parent directory, and so on.

If you enter the command lean -o foo.olean foo.lean from the command line, Lean
processes foo.lean and, if it compiles successfully, it stores the output in foo.olean. The
result is that another file can then import foo.

When you are editing a single file with either the web interface or the Emacs Lean mode,
however, Lean only checks the file internally, without saving the .olean output. Suppose,
then, you wish to build a project that has multiple files. What you really want is that
Lean’s Emacs mode will build all the relevant .olean files in the background, so that you
can import those files freely.

The Emacs mode makes this easy. To start a project that may potentially involve more
than one file, choose the folder where you want the project to reside, open an initial file in
Emacs, choose “create a new project” from the Lean menu, and press the “open” button.
This creates a file, .project, which instructs a background process to ensure that whenever
you are working on a file in that folder (or any subfolder thereof), compiled versions of all
the modules it depends on are available and up to date.

Suppose you are editing foo.lean, which imports bar. You can switch to bar.lean and
make additions or corrections to that file, then switch back to foo and continue working.

CHAPTER 5. INTERACTING WITH LEAN 71

The process linja, based on the ninja build system, ensures that bar is recompiled and
that an up-to-date version is available to foo.

Incidentally, outside of Emacs, from a terminal window, you can type linja anywhere
in your project folder to ensure that all your files have compiled .olean counterparts, and
that they are up to date.

Notation and Abbreviations
Lean’s parser is an instance of a Pratt parser, a non-backtracking parser that is fast and
flexible. You can read about Pratt parsers in a number of places online, such as here:

http://en.wikipedia.org/wiki/Pratt_parser http://eli.thegreenplace.
net/2010/01/02/top-down-operator-precedence-parsing

Identifiers can include any alphanumeric characters, including Greek characters (other than
Π , Σ , and λ , which, as we have seen, have a special meaning in the dependent type theory).
They can also include subscripts, which can be entered by typing _ followed by the desired
subscripted character.

Lean’s parser is moreover extensible, which is to say, we can define new notation.

import data.nat
open nat

notation `[` a `**` b `]` := a * b + 1

definition mul_square (a b : N) := a * a * b * b

infix `<*>`:50 := mul_square

eval [2 ** 3]
eval 2 <*> 3

In this example, the notation command defines a complex binary notation for multiplying
and adding one. The infix command declares a new infix operator, with precedence 50,
which associates to the left. (More precisely, the token is given left-binding power 50.) The
command infixr defines notation which associates to the right, instead.

If you declare these notations in a namespace, the notation is only available when the
namespace is open. You can declare temporary notation using the keyword local, in
which case the notation is available in the current file, and moreover, within the scope of
the current namespace or section, if you are in one.

local notation `[` a `**` b `]` := a * b + 1
local infix `<*>`:50 := λ a b : N, a * a * b * b

http://en.wikipedia.org/wiki/Pratt_parser
http://eli.thegreenplace.net/2010/01/02/top-down-operator-precedence-parsing
http://eli.thegreenplace.net/2010/01/02/top-down-operator-precedence-parsing

CHAPTER 5. INTERACTING WITH LEAN 72

The file reserved_notation.lean in the init folder of the library declares the left-
binding powers of a number of common symbols that are used in the library.

https://github.com/leanprover/lean/blob/master/library/init/reserved_
notation.lean

You are welcome to overload these symbols for your own use, but you cannot change their
right-binding power.

Remember that you can direct the pretty-printer to suppress notation with the com-
mand set_option pp.notation false. You can also declare notation to be used for input
purposes only with the [parsing_only] attribute:

import data.nat
open nat

notation [parsing_only] `[` a `**` b `]` := a * b + 1

variables a b : N
check [a ** b]

The output of the check command displays the expression as a * b + 1. Lean also
provides mechanisms for iterated notation, such as [a, b, c, d, e] to denote a list with
the indicated elements. See the discussion of list in the next chapter for an example.

Notation in Lean can be overloaded, which is to say, the same notation can be used for
more than one purpose. In that case, Lean’s elaborator will try to disambiguate based on
context. For example, we have already seen that with the eq.ops namespace open, the
inverse symbol can be used to denote the symmetric form of an equality. It can also be
used to denote the multiplicative inverse:

import data.rat
open rat eq.ops

variable r : Q

check r ¹ -- Q
check (eq.refl r) ¹ -- r = r

Insofar as overloads produce ambiguity, they should be used sparingly. We avoid the use of
overloads for arithmetic operations like +, *, -, and / by using type classes, as described in
Chapter Type Classes. In the following, the addition operation denotes a general algebraic
operation that can be instantiated to nat or int as required:

import data.nat data.int
open algebra nat int

variables a b : int

https://github.com/leanprover/lean/blob/master/library/init/reserved_notation.lean
https://github.com/leanprover/lean/blob/master/library/init/reserved_notation.lean

CHAPTER 5. INTERACTING WITH LEAN 73

variables m n : nat

check a + b -- Z
check m + n -- N
print notation +

This is sometimes called parametric polymorphism, in contrast to ad hoc polymorphism,
which we are considering here. For example, the notation ++ is used to concatenate both
lists and vectors:

import data.list data.tuple
open list tuple

variables (A : Type) (m n : N)
variables (v : tuple A m) (w : tuple A n) (s t : list A)

check s ++ t
check v ++ w

Where it is necessary to disambiguate, Lean allows you to precede an expression with the
notation #<namespace> to specify the namespace in which notation is to be interpreted.

import data.list data.tuple
open list tuple

variables (A : Type) (m n : N)
variables (v : tuple A m) (w : tuple A n) (s t : list A)

-- BEGIN
check (#list λ x y, x ++ y)
check (#tuple λ x y, x ++ y)
-- END

Lean provides an abbreviation mechanism that is similar to the notation mechanism.

import data.nat
open nat

abbreviation double (x : N) : N := x + x

theorem foo (x : N) : double x = x + x := rfl
check foo

An abbreviation is a transient form of definition that is expanded as soon as an expression
is processed. As with notation, however, the pretty-printer re-constitutes the expression
and prints the type of foo as double x = x + x. As with notation, you can designate an
abbreviation to be [parsing-only], and you can direct the pretty-printer to suppress their
use with the command set_option pp.notation false. Finally, again as with notation,

CHAPTER 5. INTERACTING WITH LEAN 74

you can limit the scope of an abbreviation by prefixing the declarations with the local
modifier.

As the name suggests, abbreviations are intended to be used as convenient shorthand
for long expressions. One common use is to abbreviate a long identifier:

definition my_long_identity_function {A : Type} (x : A) : A := x
local abbreviation my_id := @my_long_identity_function

Coercions
Lean also provides mechanisms to automatically insert coercions between types. These are
user-defined functions between datatypes that make it possible to “view” one datatype as
another. For example, any natural number can be coerced to an integer.

check m + n -- m + n : N
check a + n -- a + n : Z
check n + a -- n + a : Z
check (m + n : Z) -- m + n : Z

set_option pp.coercions true

check m + n -- m + n : N
check a + n -- a + of_nat n : Z
check n + a -- of_nat n + a : Z
check (m + n : Z) -- of_nat (m + n) : Z

Setting the option pp.coercions to true makes the coercions explicit. Coercions that are
declared in a namespace are only available to the system when the namespace is opened.
The notation (t : T) constrains Lean to find an interpertation of t which gives it a type
that is definitionally equal to T, thereby allowing you to specify the interpretation of t you
have in mind. Thus checking (m + n : Z) forces the insertion of a coercion.

Here is an example of how we can define a coercion from the booleans to the natural
numbers.

import data.bool data.nat
open bool nat

definition bool.to_nat [coercion] (b : bool) : nat :=
bool.cond b 1 0

eval 2 + ff
eval 2 + tt
eval tt + tt + tt + ff

print coercions -- show all coercions
print coercions bool -- show all coercions from bool

CHAPTER 5. INTERACTING WITH LEAN 75

The tag “coercion” is an attribute that is associated with the symbol bool.to_nat. It does
not change the meaning of bool.to_nat. Rather, it associates additional information to
the symbol that informs Lean’s elaboration algorithm, as discussed in Section Elaboration
and Unification. We could also declare bool.to_nat to be a coercion after the fact as
follows:

definition bool.to_nat (b : bool) : nat :=
bool.cond b 1 0

attribute bool.to_nat [coercion]

In both cases, the scope of the coercion is the current namespace, so the coercion will be in
place whenever the module is imported and the namespace is open. Sometimes it is useful
to assign an attribute only temporarily. The local modifier ensures that the declaration
is only in effect in the current file, and within the current namespace or section:

definition bool.to_nat (b : bool) : nat :=
bool.cond b 1 0

local attribute bool.to_nat [coercion]

Overloads and coercions introduce “choice points” in the elaboration process, forcing the
elaborator to consider multiple options and backtrack appropriately. This can slow down
the elaboration process. What is more problematic is that it can make error messages less
informative: Lean only reports the result of the last backtracking path, which means the
failure that is reported to the user may be due to the wrong interpretation of an overload
or coercion. This is why Lean provides mechanism for namespace management: parsing
and elaboration go more smoothly when we only import the notation that we need.

Nonetheless, overloading is quite convenient, and often causes no problems. There are
various ways to manually disambiguate an expression when necessary. One is to precede the
expression with the notation #<namespace>, to specify the namespace in which notation is
to be interpreted. Another is to replace the notation with an explicit function name. Yet
a third is to use the (t : T) notation to indicate the intended type.

6

Inductive Types

We have seen that Lean’s formal foundation includes basic types, Prop, Type.{1},
Type.{2}, ..., and allows for the formation of dependent function types, Π x : A.
B. In the examples, we have also made use of additional types like bool, nat, and int, and
type constructors, like list, and product, ×. In fact, in Lean’s library, every concrete
type other than the universes and every type constructor other than Pi is an instance of a
general family of type constructions known as inductive types. It is remarkable that it is
possible to construct a substantial edifice of mathematics based on nothing more than the
type universes, Pi types, and inductive types; everything else follows from those.

Intuitively, an inductive type is built up from a specified list of constructors. In Lean,
the syntax for specifying such a type is as follows:

inductive foo : Type :=
| constructor1 : ... → foo
| constructor2 : ... → foo
...
| constructorn : ... → foo

The intuition is that each constructor specifies a way of building new objects of foo, possibly
from previously constructed values. The type foo consists of nothing more than the objects
that are constructed in this way. The first character | in an inductive declaration is optional.
We can also separate constructors using a comma instead of |.

We will see below that the arguments to the constructors can include objects of type
foo, subject to a certain “positivity” constraint, which guarantees that elements of foo are
built from the bottom up. Roughly speaking, each ... can be any Pi type constructed
from foo and previously defined types, in which foo appears, if at all, only as the “target”
of the Pi type. For more details, see [2].

76

CHAPTER 6. INDUCTIVE TYPES 77

We will provide a number of examples of inductive types. We will also consider slight
generalizations of the scheme above, to mutually defined inductive types, and so-called
inductive families.

As with the logical connectives, every inductive type comes with introduction rules,
which show how to construct an element of the type, and elimination rules, which show
how to “use” an element of the type in another construction. The analogy to the logical
connectives should not come as a surprise; as we will see below, they, too, are examples of
inductive type constructions. You have already seen the introduction rules for an inductive
type: they are just the constructors that are specified in the definition of the type. The
elimination rules provide for a principle of recursion on the type, which includes, as a
special case, a principle of induction as well.

In the next chapter, we will describe Lean’s function definition package, which provides
even more convenient ways to define functions on inductive types and carry out inductive
proofs. But because the notion of an inductive type is so fundamental, we feel it is im-
portant to start with a low-level, hands-on understanding. We will start with some basic
examples of inductive types, and work our way up to more elaborate and complex examples.

Enumerated Types
The simplest kind of inductive type is simply a type with a finite, enumerated list of
elements.

inductive weekday : Type :=
| sunday : weekday
| monday : weekday
| tuesday : weekday
| wednesday : weekday
| thursday : weekday
| friday : weekday
| saturday : weekday

The inductive command creates a new type, weekday. The constructors all live in the
weekday namespace.

check weekday.sunday
check weekday.monday

open weekday

check sunday
check monday

Think of the sunday, monday, … as being distinct elements of weekday, with no other
distinguishing properties. The elimination principle, weekday.rec, is defined at the same

CHAPTER 6. INDUCTIVE TYPES 78

time as the type weekday and its constructors. It is also known as a recursor, and it is what
makes the type “inductive”: it allows us to define a function on weekday by assigning values
corresponding to each constructor. The intuition is that an inductive type is exhaustively
generated by the constructors, and has no elements beyond those they construct.

We will use a slight (automatically generated) variant, weekday.rec_on, which takes
its arguments in a more convenient order. Note that the shorter versions of names like
weekday.rec and weekday.rec_on are not made available by default when we open the
weekday namespace, to avoid clashes. If we import nat, we can use rec_on to define a
function from weekday to the natural numbers:

definition number_of_day (d : weekday) : nat :=
weekday.rec_on d 1 2 3 4 5 6 7

eval number_of_day weekday.sunday
eval number_of_day weekday.monday
eval number_of_day weekday.tuesday

The first (explicit) argument to rec_on is the element being “analyzed.” The next seven ar-
guments are the values corresponding to the seven constructors. Note that number_of_day
weekday.sunday evaluates to 1: the computation rule for rec_on recognizes that sunday
is a constructor, and returns the appropriate argument.

Below we will encounter a more restricted variant of rec_on, namely, cases_on. When
it comes to enumerated types, rec_on and cases_on are the same. You may prefer to use
the label cases_on, because it emphasizes that the definition is really a definition by cases.

definition number_of_day (d : weekday) : nat :=
weekday.cases_on d 1 2 3 4 5 6 7

It is often useful to group definitions and theorems related to a structure in a namespace
with the same name. For example, we can put the number_of_day function in the weekday
namespace. We are then allowed to use the shorter name when we open the namespace.

The names rec_on, cases_on, induction_on, and so on are generated automatically.
As noted above, they are protected to avoid name clashes. In other words, they are not
provided by default when the namespace is opened. However, you can explicitly declare
abbreviations for them using the renaming option when you open a namespace.

namespace weekday
local abbreviation cases_on := @weekday.cases_on

definition number_of_day (d : weekday) : nat :=
cases_on d 1 2 3 4 5 6 7

end weekday

eval weekday.number_of_day weekday.sunday

CHAPTER 6. INDUCTIVE TYPES 79

open weekday (renaming cases_on → cases_on)

eval number_of_day sunday
check cases_on

We can define functions from weekday to weekday:

namespace weekday
definition next (d : weekday) : weekday :=
weekday.cases_on d monday tuesday wednesday thursday friday saturday sunday

definition previous (d : weekday) : weekday :=
weekday.cases_on d saturday sunday monday tuesday wednesday thursday friday

eval next (next tuesday)
eval next (previous tuesday)

example : next (previous tuesday) = tuesday := rfl
end weekday

How can we prove the general theorem that next (previous d) = d for any weekday
d? The induction principle parallels the recursion principle: we simply have to provide a
proof of the claim for each constructor:

theorem next_previous (d: weekday) : next (previous d) = d :=
weekday.induction_on d
(show next (previous sunday) = sunday, from rfl)
(show next (previous monday) = monday, from rfl)
(show next (previous tuesday) = tuesday, from rfl)
(show next (previous wednesday) = wednesday, from rfl)
(show next (previous thursday) = thursday, from rfl)
(show next (previous friday) = friday, from rfl)
(show next (previous saturday) = saturday, from rfl)

In fact, induction_on is just a special case of rec_on where the target type is an
element of Prop. In other words, under the propositions-as-types correspondence, the
principle of induction is a type of definition by recursion, where what is being “defined” is
a proof instead of a piece of data. We could equally well have used cases_on:

theorem next_previous (d: weekday) : next (previous d) = d :=
weekday.cases_on d
(show next (previous sunday) = sunday, from rfl)
(show next (previous monday) = monday, from rfl)
(show next (previous tuesday) = tuesday, from rfl)
(show next (previous wednesday) = wednesday, from rfl)
(show next (previous thursday) = thursday, from rfl)
(show next (previous friday) = friday, from rfl)
(show next (previous saturday) = saturday, from rfl)

CHAPTER 6. INDUCTIVE TYPES 80

While the show commands make the proof clearer and more readable, they are not neces-
sary:

theorem next_previous (d: weekday) : next (previous d) = d :=
weekday.cases_on d rfl rfl rfl rfl rfl rfl rfl

Some fundamental data types in the Lean library are instances of enumerated types.

inductive empty : Type

inductive unit : Type :=
star : unit

inductive bool : Type :=
| ff : bool
| tt : bool

(To run these examples, we put them in a namespace called hide, so that a name like bool
does not conflict with the bool in the standard library. This is necessary because these
types are part of the Lean “prelude” that is automatically imported with the system is
started.)

The type empty is an inductive datatype with no constructors. The type unit has
a single element, star, and the type bool represents the familiar boolean values. As an
exercise, you should think about what the introduction and elimination rules for these
types do. As a further exercise, we suggest defining boolean operations band, bor, bnot on
the boolean, and verifying common identities. Note that defining a binary operation like
band will require nested cases splits:

definition band (b1 b2 : bool) : bool :=
bool.cases_on b1

ff
(bool.cases_on b2 ff tt)

Similarly, most identities can be proved by introducing suitable case splits, and then using
rfl.

Constructors with Arguments
Enumerated types are a very special case of inductive types, in which the constructors
take no arguments at all. In general, a “construction” can depend on data, which is then
represented in the constructed argument. Consider the definitions of the product type and
sum type in the library:

CHAPTER 6. INDUCTIVE TYPES 81

inductive prod (A B : Type) :=
mk : A → B → prod A B

inductive sum (A B : Type) : Type :=
| inl {} : A → sum A B
| inr {} : B → sum A B

For the moment, ignore the annotation {} after the constructors inl and inr; we will
explain that below. In the meanwhile, think about what is going on in these examples.
The product type has one constructor, prod.mk, which takes two arguments. To define a
function on prod A B, we can assume the input is of the form prod.mk a b, and we have
to specify the output, in terms of a and b. We can use this to define the two projections
for prod; remember that the standard library defines notation A × B for prod A B and
(a, b) for prod.mk a b.

definition pr1 {A B : Type} (p : A × B) : A :=
prod.rec_on p (λ a b, a)

definition pr2 {A B : Type} (p : A × B) : B :=
prod.rec_on p (λ a b, b)

The function pr1 takes a pair, p. Applying the recursor prod.rec_on p (fun a b, a)
interprets p as a pair, prod.mk a b, and then uses the second argument to determine what
to do with a and b.

Here is another example:

definition prod_example (p : bool × N) : N :=
prod.rec_on p (λ b n, cond b (2 * n) (2 * n + 1))

eval prod_example (tt, 3)
eval prod_example (ff, 3)

The cond function is a boolean conditional: cond b t1 t2 return t1 if b is true, and t2
otherwise. (It has the same effect as bool.rec_on b t2 t1.) The function prod_example
takes a pair consisting of a boolean, b, and a number, n, and returns either 2 * n or 2 *
n + 1 according to whether b is true or false.

In contrast, the sum type has two constructors, inl and inr (for “insert left” and
“insert right”), each of which takes one (explicit) argument. To define a function on sum
A B, we have to handle two cases: either the input is of the form inl a, in which case we
have to specify an output value in terms of a, or the input is of the form inr b, in which
case we have to specify an output value in terms of b.

definition sum_example (s : N + N) : N :=
sum.cases_on s (λ n, 2 * n) (λ n, 2 * n + 1)

CHAPTER 6. INDUCTIVE TYPES 82

eval sum_example (inl 3)
eval sum_example (inr 3)

This example is similar to the previous one, but now an input to sum_example is implicitly
either of the form inl n or inr n. In the first case, the function returns 2 * n, and the
second case, it returns 2 * n + 1.

In the section after next we will see what happens when the constructor of an inductive
type takes arguments from the inductive type itself. What characterizes the examples we
consider in this section is that this is not the case: each constructor relies only on previously
specified types.

Notice that a type with multiple constructors is disjunctive: an element of sum A B is
either of the form inl a or of the form inl b. A constructor with multiple arguments
introduces conjunctive information: from an element prod.mk a b of prod A B we can
extract a and b. An arbitrary inductive type can include both features, by having any
number of constructors, each of which takes any number of arguments.

A type, like prod, with only one constructor is purely conjunctive: the constructor
simply packs the list of arguments into a single piece of data, essentially a tuple where
the type of subsequent arguments can depend on the type of the initial argument. We
can also think of such a type as a “record” or a “structure”. In Lean, these two words are
synonymous, and provide alternative syntax for inductive types with a single constructor.

structure prod (A B : Type) :=
mk :: (pr1 : A) (pr2 : B)

The structure command simultaneously introduces the inductive type, prod, its construc-
tor, mk, the usual eliminators (rec, rec_on), as well as the projections, pr1 and pr2, as
defined above.

If you do not name the constructor, Lean uses mk as a default. For example, the
following defines a record to store a color as a triple of RGB values:

record color := (red : nat) (green : nat) (blue : nat)
definition yellow := color.mk 255 255 0
eval color.red yellow

The definition of yellow forms the record with the three values shown, and the projec-
tion color.red returns the red component. The structure command is especially useful
for defining algebraic structures, and Lean provides substantial infrastructure to support
working with them. Here, for example, is the definition of a semigroup:

structure Semigroup : Type :=
(carrier : Type)
(mul : carrier → carrier → carrier)
(mul_assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

CHAPTER 6. INDUCTIVE TYPES 83

We will see more examples in Chapter Structures and Records.
Notice that the product type depends on parameters A B : Type which are arguments

to the constructors as well as prod. Lean detects when these arguments can be inferred
from later arguments to a constructor, and makes them implicit in that case. Sometimes
an argument can only be inferred from the return type, which means that it could not be
inferred by parsing the expression from bottom up, but may be inferrable from context.
In that case, Lean does not make the argument implicit by default, but will do so if we
add the annotation {} after the constructor. We used that option, for example, in the
definition of sum:

inductive sum (A B : Type) : Type :=
| inl {} : A → sum A B
| inr {} : B → sum A B

As a result, the argument A to inl and the argument B to inr are left implicit.
We have already discussed sigma types, also known as the dependent product:

inductive sigma {A : Type} (B : A → Type) :=
dpair : Π a : A, B a → sigma B

Two more examples of inductive types in the library are the following:

inductive option (A : Type) : Type :=
| none {} : option A
| some : A → option A

inductive inhabited (A : Type) : Type :=
mk : A → inhabited A

In the semantics of dependent type theory, there is no built-in notion of a partial function.
Every element of a function type A → B or a Pi type Π x : A, B is assumed to have
a value at every input. The option type provides a way of representing partial functions.
An element of option B is either none or of the form some b, for some value b : B. Thus
we can think of an element f of the type A → option B as being a partial function from A
to B: for every a : A, f a either returns none, indicating the f a is “undefined”, or some
b.

An element of inhabited A is simply a witness to the fact that there is an element of
A. Later, we will see that inhabited is an example of a type class in Lean: Lean can be
instructed that suitable base types are inhabited, and can automatically infer that other
constructed types are inhabited on that basis.

As exercises, we encourage you to develop a notion of composition for partial functions
from A to B and B to C, and show that it behaves as expected. We also encourage you to
show that bool and nat are inhabited, that the product of two inhabited types is inhabited,
and that the type of functions to an inhabited type is inhabited.

CHAPTER 6. INDUCTIVE TYPES 84

Inductively Defined Propositions
Inductively defined types can live in any type universe, including the bottom-most one,
Prop. In fact, this is exactly how the logical connectives are defined.

inductive false : Prop

inductive true : Prop :=
intro : true

inductive and (a b : Prop) : Prop :=
intro : a → b → and a b

inductive or (a b : Prop) : Prop :=
| intro_left : a → or a b
| intro_right : b → or a b

You should think about how these give rise to the introduction and elimination rules that
you have already seen. There are rules that govern what the eliminator of an inductive
type can eliminate to, that is, what kinds of types can be the target of a recursor. Roughly
speaking, what characterizes inductive types in Prop is that one can only eliminate to other
types in Prop. This is consistent with the understanding that if P : Prop, an element p :
P carries no data. There is a small exception to this rule, however, which we will discuss
below, in the section on inductive families.

Even the existential quantifier is inductively defined:

inductive Exists {A : Type} (P : A → Prop) : Prop :=
intro : ∀ (a : A), P a → Exists P

definition exists.intro := @Exists.intro

Keep in mind that the notation ∃ x : A, P is syntactic sugar for Exists (λ x : A, P).
The definitions of false, true, and, and or are perfectly analogous to the definitions

of empty, unit, prod, and sum. The difference is that the first group yields elements of
Prop, and the second yields elements of Type.{i} for i greater than 0. In a similar way,
∃ x : A, P is a Prop-valued variant of Σ x : A, P.

This is a good place to mention another inductive type, denoted {x : A | P}, which
is sort of a hybrid between ∃ x : A, P and Σ x : A, P.

inductive subtype {A : Type} (P : A → Prop) : Type :=
tag : Π x : A, P x → subtype P

The notation {x : A | P} is syntactic sugar for subtype (λ x : A, P). It is modeled
after subset notation in set theory: the idea is that {x : A | P} denotes the collection of
elements of A that have property P.

CHAPTER 6. INDUCTIVE TYPES 85

Defining the Natural Numbers
The inductively defined types we have seen so far are “flat”: constructors wrap data and
insert it into a type, and the corresponding recursor unpacks the data and acts on it.
Things get much more interesting when the constructors act on elements of the very type
being defined. A canonical example is the type nat of natural numbers:

inductive nat : Type :=
| zero : nat
| succ : nat → nat

There are two constructors. We start with zero : nat; it takes no arguments, so we have
it from the start. In contrast, the constructor succ can only be applied to a previously
constructed nat. Applying it to zero yields succ zero : nat. Applying it again yields
succ (succ zero) : nat, and so on. Intuitively, nat is the “smallest” type with these
constructors, meaning that it is exhaustively (and freely) generated by starting with zero
and applying succ repeatedly.

As before, the recursor for nat is designed to define a dependent function f from nat
to any domain, that is, an element f of Π n : nat, C n for some C : nat → Type. It
has to handle two cases: the case where the input is zero, and the case where the input is
of the form succ n for some n : nat. In the first case, we simply specify a target value
with the appropriate type, as before. In the second case, however, the recursor can assume
that a value of f at n has already been computed. As a result, the next argument to the
recursor specifies a value for f (succ n) in terms of n and f n. If we check the type of
the recursor,

check @nat.rec_on

we find the following:

Π {C : nat → Type} (n : nat),
C nat.zero → (Π (a : nat), C a → C (nat.succ a)) → C n

The implicit argument, C, is the codomain of the function being defined. In type theory it
is common to say C is the motive for the elimination/recursion. The next argument, n :
nat, is the input to the function. It is also known as the major premise. Finally, the two
arguments after specify how to compute the zero and successor cases, as described above.
They are also known as the minor premises.

Consider, for example, the addition function add m n on the natural numbers. Fixing
m, we can define addition by recursion on n. In the base case, we set add m zero to m. In
the successor step, assuming the value add m n is already determined, we define add m
(succ n) to be succ (add m n).

CHAPTER 6. INDUCTIVE TYPES 86

namespace nat

definition add (m n : nat) : nat :=
nat.rec_on n m (λ n add_m_n, succ add_m_n)

-- try it out
eval add (succ zero) (succ (succ zero))

end nat

It is useful to put such definitions into a namespace, nat. We can then go on to define
familiar notation in that namespace. The two defining equations for addition now hold
definitionally:

notation 0 := zero
infix `+` := add

theorem add_zero (m : nat) : m + 0 = m := rfl
theorem add_succ (m n : nat) : m + succ n = succ (m + n) := rfl

Proving a fact like 0 + m = m, however, requires a proof by induction. As observed
above, the induction principle is just a special case of the recursion principle, when the
codomain C n is an element of Prop. It represents the familiar pattern of an inductive
proof: to prove ∀ n, C n, first prove C 0, and then, for arbitrary n, assume IH : C n and
prove C (succ n).

local abbreviation induction_on := @nat.induction_on

theorem zero_add (n : nat) : 0 + n = n :=
induction_on n

(show 0 + 0 = 0, from rfl)
(take n,

assume IH : 0 + n = n,
show 0 + succ n = succ n, from

calc
0 + succ n = succ (0 + n) : rfl
... = succ n : IH)

In the example above, we encourage you to replace induction_on with rec_on and
observe that the theorem is still accepted by Lean. As we have seen above, induction_on
is just a special case of rec_on.

For another example, let us prove the associativity of addition, ∀ m n k, m + n + k =
m + (n + k). (The notation +, as we have defined it, associates to the left, so m + n + k
is really (m + n) + k.) The hardest part is figuring out which variable to do the induction
on. Since addition is defined by recursion on the second argument, k is a good guess, and
once we make that choice the proof almost writes itself:

CHAPTER 6. INDUCTIVE TYPES 87

theorem add_assoc (m n k : nat) : m + n + k = m + (n + k) :=
induction_on k

(show m + n + 0 = m + (n + 0), from rfl)
(take k,

assume IH : m + n + k = m + (n + k),
show m + n + succ k = m + (n + succ k), from

calc
m + n + succ k = succ (m + n + k) : rfl
... = succ (m + (n + k)) : IH
... = m + succ (n + k) : rfl
... = m + (n + succ k) : rfl)

For another example, suppose we try to prove the commutativity of addition. Choosing
induction on the second argument, we might begin as follows:

theorem add_comm (m n : nat) : m + n = n + m :=
induction_on n

(show m + 0 = 0 + m, from eq.symm (zero_add m))
(take n,

assume IH : m + n = n + m,
calc
m + succ n = succ (m + n) : rfl

... = succ (n + m) : IH

... = succ n + m : sorry)

At this point, we see that we need another supporting fact, namely, that succ (n + m) =
succ n + m. We can prove this by induction on m:

theorem succ_add (m n : nat) : succ m + n = succ (m + n) :=
induction_on n

(show succ m + 0 = succ (m + 0), from rfl)
(take n,

assume IH : succ m + n = succ (m + n),
show succ m + succ n = succ (m + succ n), from

calc
succ m + succ n = succ (succ m + n) : rfl
... = succ (succ (m + n)) : IH
... = succ (m + succ n) : rfl)

We can then replace the sorry in the previous proof with succ_add.
As an exercise, try defining other operations on the natural numbers, such as multipli-

cation, the predecessor function (with pred 0 = 0), truncated subtraction (with n - m
= 0 when m is greater than or equal to n), and exponentiation. Then try proving some of
their basic properties, building on the theorems we have already proved.

-- define mul by recursion on the second argument
definition mul (m n : nat) : nat := sorry

infix `*` := mul

CHAPTER 6. INDUCTIVE TYPES 88

-- these should be proved by rfl
theorem mul_zero (m : nat) : m * 0 = 0 := sorry
theorem mul_succ (m n : nat) : m * (succ n) = m * n + m := sorry

theorem zero_mul (n : nat) : 0 * n = 0 := sorry

theorem mul_distrib (m n k : nat) : m * (n + k) = m * n + m * k := sorry

theorem mul_assoc (m n k : nat) : m * n * k = m * (n * k) := sorry

-- hint: you will need to prove an auxiliary statement
theorem mul_comm (m n : nat) : m * n = n * m := sorry

definition pred (n : nat) : nat := nat.cases_on n zero (fun n, n)

theorem pred_succ (n : nat) : pred (succ n) = n := sorry

theorem succ_pred (n : nat) : n ̸= 0 → succ (pred n) = n := sorry

Other Inductive Types
Let us consider some more examples of inductively defined types. For any type, A, the type
list A of lists of elements of A is defined in the library.

inductive list (A : Type) : Type :=
| nil {} : list A
| cons : A → list A → list A

namespace list

variable {A : Type}

notation h :: t := cons h t

definition append (s t : list A) : list A :=
list.rec t (λ x l u, x::u) s

notation s ++ t := append s t

theorem nil_append (t : list A) : nil ++ t = t := rfl

theorem cons_append (x : A) (s t : list A) : x::s ++ t = x::(s ++ t) := rfl

end list

A list of elements of type A is either the empty list, nil, or an element h : A followed
by a list t : list A. We define the notation h :: t to represent the latter. The first
element, h, is commonly known as the “head” of the list, and the remainder, t, is known as
the “tail.” Recall that the notation {} in the definition of the inductive type ensures that
the argument to nil is implicit. In most cases, it can be inferred from context. When it
cannot, we have to write @nil A to specify the type A.

CHAPTER 6. INDUCTIVE TYPES 89

Lean allows us to define iterative notation for lists:

inductive list (A : Type) : Type :=
| nil {} : list A
| cons : A → list A → list A

namespace list

notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l

section
open nat
check [1, 2, 3, 4, 5]
check ([1, 2, 3, 4, 5] : list N)

end

end list

In the first check, Lean assumes that [1, 2, 3, 4, 5] is merely a list of numerals. The
(t : list N) expression forces Lean to interpret t as a list of natural numbers.

As an exercise, prove the following:

theorem append_nil (t : list A) : t ++ nil = t := sorry

theorem append_assoc (r s t : list A) : r ++ s ++ t = r ++ (s ++ t) := sorry

Try also defining the function length : Π A : Type, list A → nat that returns the
length of a list, and prove that it behaves as expected (for example, length (s ++ t) =
length s + length t).

For another example, we can define the type of binary trees:

inductive binary_tree :=
| leaf : binary_tree
| node : binary_tree → binary_tree → binary_tree

In fact, we can even define the type of countably branching trees:

import data.nat
open nat

inductive cbtree :=
| leaf : cbtree
| sup : (N → cbtree) → cbtree

namespace cbtree

definition succ (t : cbtree) : cbtree :=
sup (λ n, t)

definition omega : cbtree :=

CHAPTER 6. INDUCTIVE TYPES 90

sup (nat.rec leaf (λ n t, succ t))

end cbtree

Generalizations
We now consider two generalizations of inductive types that are sometimes useful. First,
Lean supports mutually defined inductive types. The idea is that we can define two (or
more) inductive types at the same time, where each one refers to the other.

inductive tree (A : Type) : Type :=
| node : A → forest A → tree A
with forest : Type :=
| nil : forest A
| cons : tree A → forest A → forest A

In this example, a tree with elements labeled from A is of the form node a f, where a
is an element of A (the label), and f a forest. At the same time, a forest of trees with
elements labeled from A is essentially defined to be a list of trees.

A more powerful generalization is given by the possibility of defining inductive type
families. There are indexed families of types defined by a simultaneous induction of the
following form:

inductive foo : ... → Type :=
| constructor1 : ... → foo ...
| constructor2 : ... → foo ...
...
| constructorn : ... → foo ...

In contrast to ordinary inductive definition, which construct an element of Type, the more
general version constructs a function ... → Type, where “...” denotes a sequence of
argument types, also known as indices. Each constructor then constructs an element of
some type in the family. One example is the definition of vector A n, the type of vectors
of elements of A of length n:

inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n}, A → vector A n → vector A (succ n)

Notice that the cons constructor takes an element of vector A n, and returns an element
of vector A (succ n), thereby using an element of one member of the family to build an
element of another.

Another example is given by the family of types fin n. For each n, fin n is supposed
to denote a generic type of n elements:

CHAPTER 6. INDUCTIVE TYPES 91

inductive fin : nat → Type :=
| fz : Π n, fin (nat.succ n)
| fs : Π {n}, fin n → fin (nat.succ n)

This example may be hard to understand, so you should take the time to think about how
it works.

Yet another example is given by the definition of the equality type in the library:

inductive eq {A : Type} (a : A) : A → Prop :=
refl : eq a a

For each fixed A : Type and a : A, this definition constructs a family of types eq a
x, indexed by x : A. Notably, however, there is only one constructor, refl, which is an
element of eq a a. Intuitively, the only way to construct a proof of eq a x is to use
reflexivity, in the case where x is a. Note that eq a a is the only inhabited type in the
family of types eq a x. The elimination principle generated by Lean says that eq is the
least reflexive relation on A. The eliminator/recursor for eq is of the following form:

eq.rec_on : Π {A : Type} {a : A} {C : A → Type} {b : A}, a = b → C a → C b

It is a remarkable fact that all the basic axioms for equality follow from the constructor,
refl, and the eliminator, eq.rec_on.

This eliminator illustrates the exception to the fact that inductive definitions living in
Prop can only eliminate to Prop. Because there is only one constructor to eq, it carries
no information, other than the type is inhabited, and Lean’s internal logic allows us to
eliminate to an arbitrary Type. This is how we define a cast operation that casts an
element from type A into B when a proof p : eq A B is provided:

theorem cast {A B : Type} (p : eq A B) (a : A) : B :=
eq.rec_on p a

The recursor eq.rec_on is also used to define substitution:

theorem subst {A : Type} {a b : A} {P : A → Prop}
(H1 : eq a b) (H2 : P a) : P b :=

eq.rec H2 H1

Using the recursor with H1 : a = b, we may assume a and b are the same, in which case,
P b and P a are the same.

It is not hard to prove that eq is symmetric and transitive. In the following example,
we prove symm and leave as exercise the theorems trans and congr (congruence).

CHAPTER 6. INDUCTIVE TYPES 92

theorem symm {A : Type} {a b : A} (H : eq a b) : eq b a :=
subst H (eq.refl a)

theorem trans {A : Type} {a b c : A} (H1 : eq a b) (H2 : eq b c) : eq a c :=
sorry

theorem congr {A B : Type} {a b : A} (f : A → B) (H : eq a b) : eq (f a) (f b) :=
sorry

In the type theory literature, there are further generalizations of inductive definitions,
for example, the principles of induction-recursion and induction-induction. These are not
supported by Lean.

Heterogeneous Equality
Given A : Type and B : A → Type, suppose we want to generalize the congruence theorem
congr in the previous example to dependent functions f : Π x : A, B x. Roughly
speaking, we would like to have a theorem that, says that if a = b, then f a = f b. The
first obstacle is stating the theorem: the term eq (f a) (f b) is not type correct since f
a has type B a, f b has type B b, and the equality predicate eq expects both arguments
to have the same type. Notice that f a has type B a, so the term eq.rec_on H (f a) has
type B b. You should think of eq.rec_on H (f a) as “f a, viewed as an element of B b.”
We can then write eq (eq.rec_on H (f a)) (f b) to express that f a and f b are equal,
modulo the difference between their types. Here is a proof of the generalized congruence
theorem, with this approach:

theorem hcongr {A : Type} {B : A → Type} {a b : A} (f : Π x : A, B x)
(H : eq a b) : eq (eq.rec_on H (f a)) (f b) :=

have h1 : ∀ h : eq a a, eq (eq.rec_on h (f a)) (f a), from
assume h : eq a a, eq.refl (eq.rec_on h (f a)),

have h2 : ∀ h : eq a b, eq (eq.rec_on h (f a)) (f b), from
eq.rec_on H h1,

show eq (eq.rec_on H (f a)) (f b), from
h2 H

Another option is to define a heterogeneous equality heq that can equate terms of
different types, so that we can write heq (f a) (f b) instead of eq (eq.rec_on H (f
a)) (f b). It is straightforward to define such an equality in Lean:

inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop :=
refl : heq a a

Moreover, given a b : A, we can prove heq a b → eq a b using proof irrelevance. This
theorem is called heq.to_eq in the Lean standard library. We can now state and prove

CHAPTER 6. INDUCTIVE TYPES 93

hcongr using heterogeneous equality. Note the proof is also more compact and easier to
understand.

theorem hcongr {A : Type} {B : A → Type} {a b : A} (f : Π x : A, B x)
(H : eq a b) : heq (f a) (f b) :=

eq.rec_on H (heq.refl (f a))

Heterogeneous equality, which gives elements of different types the illusion that they can be
considered equal, is sometimes called John Major equality. (The name is a bit of political
humor, due to Conor McBride.)

Automatically Generated Constructions
In the previous sections, we have seen that whenever we declare an inductive datatype
I, the Lean kernel automatically declares its constructors (aka introduction rules), and
generates and declares the eliminator/recursor I.rec. The eliminator expresses a principle
of definition by recursion, as well as the principle of proof by induction. The kernel also
associates a computational rule which determines how these definitions are eliminated when
terms and proofs are normalized.

Consider, for example, the natural numbers. Given the motive C : nat → Type, and
minor premises fz : C zero and fs : Π (n : nat), C n → C (succ n), we have the
following two computational rules: nat.rec fz fs zero reduces to fz, and nat.rec fz
fs (succ a) reduces to fs a (nat.rec fz fs a).

open nat

variable C : nat → Type
variable fz : C zero
variable fs : Π (n : nat), C n → C (succ n)

eval nat.rec fz fs zero
-- nat.rec_on is defined from nat.rec
eval nat.rec_on zero fz fs

example : nat.rec fz fs zero = fz :=
rfl

variable a : nat

eval nat.rec fz fs (succ a)
eval nat.rec_on (succ a) fz fs

example (a : nat) : nat.rec fz fs (succ a) = fs a (nat.rec fz fs a) :=
rfl

The source code that validates an inductive declaration and generates the elimina-
tor/recursor and computational rules is part of the Lean kernel. The kernel is also known

CHAPTER 6. INDUCTIVE TYPES 94

as the trusted code base, because a bug in the kernel may compromise the soundness of the
whole system.

When you define an inductive datatype, Lean automatically generates a number of use-
ful definitions. We have already seen some of them: rec_on, induction_on, and cases_on.
The module M that generates these definitions is not part of the trusted code base. A bug
in M does not compromise the soundness of the whole system, since the kernel will catch
such errors when type checking any incorrectly generated definition produced by M.

As described before, rec_on just uses its arguments in a more convenient order than
rec. In rec_on, the major premise is provided before the minor premises. Constructions
using rec_on are often easier to read and understand than the equivalent ones using rec.

open nat

print definition nat.rec_on

definition rec_on {C : nat → Type} (n : nat)
(fz : C zero) (fs : Π a, C a → C (succ a)) : C n :=

nat.rec fz fs n

Moreover, induction_on is just a special case of rec_on where the motive C is a proposition.
Finally, cases_on is a special case of rec_on where the inductive/recursive hypotheses are
omitted in the minor premises. For example, in nat.cases_on the minor premise fs has
type Π (n : nat), C (succ n) instead of Π (n : nat), C n → C (succ n). Note
that the inductive/recursive hypothesis C n has been omitted.

open nat

print definition nat.induction_on
print definition nat.cases_on

definition induction_on {C : nat → Prop} (n : nat)
(fz : C zero) (fs : Π a, C a → C (succ a)) : C n :=

nat.rec_on n fz fs

definition cases_on {C : nat → Prop} (n : nat)
(fz : C zero) (fs : Π a, C (succ a)) : C n :=

nat.rec_on n fz (fun (a : nat) (r : C a), fs a)

For any inductive datatype that is not a proposition, we can show that its constructors
are injective and disjoint. For example, on nat, we can show that succ a = succ b →
a = b (injectivity), and succ a ̸= zero (disjointness). Both proofs can be performed
using the automatically generated definition nat.no_confusion. More generally, for any
inductive datatype I that is not a proposition, Lean automatically generates a definition
of I.no_confusion. Given a motive C and an equality h : c1 t = c2 s, where c1
and c2 are two distinct I constructors, I.no_confusion constructs an inhabitant of C.
This is essentially the principle of explosion, that is, the fact that anything follows from a

CHAPTER 6. INDUCTIVE TYPES 95

contradiction. On the other hand, given a proof of c t = c s with the same constructor
on both sides and a proof of t = s → C, I.no_confusion returns an inhabitant of C.

Let us illustrate by considering the constructions for the type nat. The type of
no_confusion is based on the auxiliary definition no_confusion_type:

open nat

check @nat.no_confusion
-- Π {P : Type} {v1 v2 : N}, v1 = v2 → nat.no_confusion_type P v1 v2

check nat.no_confusion_type
-- Type → N → N → Type

Note that the motive is an implicit argument in no_confusion. The constructions work
as follows:

variable C : Type
variables a b : nat

eval nat.no_confusion_type C zero (succ a)
-- C
eval nat.no_confusion_type C (succ a) zero
-- C
eval nat.no_confusion_type C zero zero
-- C → C
eval nat.no_confusion_type C (succ a) (succ b)
-- (a = b → C) → C

In other words, from a proof of zero = succ a or succ a = 0, we obtain an element
of any type C at will. On the other hand, a proof of zero = zero provides no help in
constructing an element of type C, whereas a proof of succ a = succ b reduces the task
of constructing an element of type C to the task of constructing such an element under the
additional hypothesis a = b.

It is not hard to prove that constructors are injective and disjoint using no_confusion.
In the following example, we prove these two properties for nat and leave as exercise the
equivalent proofs for trees.

open nat

theorem succ_ne_zero (a : nat) (h : succ a = zero) : false :=
nat.no_confusion h

theorem succ.inj (a b : nat) (h : succ a = succ b) : a = b :=
nat.no_confusion h (fun e : a = b, e)

inductive tree (A : Type) : Type :=
| leaf : A → tree A
| node : tree A → tree A → tree A

CHAPTER 6. INDUCTIVE TYPES 96

open tree

variable {A : Type}

theorem leaf_ne_node {a : A} {l r : tree A}
(h : leaf a = node l r) : false :=

sorry

theorem leaf_inj {a b : A} (h : leaf a = leaf b) : a = b :=
sorry

theorem node_inj_left {l1 r1 l2 r2 : tree A}
(h : node l1 r1 = node l2 r2) : l1 = l2 :=

sorry

theorem node_inj_right {l1 r1 l2 r2 : tree A}
(h : node l1 r1 = node l2 r2) : r1 = r2 :=

sorry

If a constructor contains dependent arguments (such as sigma.mk), the generated
no_confusion uses heterogeneous equality to equate arguments of different types:

variables (A : Type) (B : A → Type)
variables (a1 a2 : A) (b1 : B a1) (b2 : B a2)
variable (C : Type)

-- Remark: b1 and b2 have different types

eval sigma.no_confusion_type C (sigma.mk a1 b1) (sigma.mk a2 b2)
-- (a1 = a2 → b1 == b2 → C) → C

Lean also generates the predicate transformer below and the recursor brec_on. It is
unlikely that you will ever need to use these constructions directly; they are auxiliary
definitions used by the recursive equation compiler we will describe in the next chapter,
and we will not discuss them further here.

Universe Levels
Since an inductive type lives in Type.{i} for some i, it is reasonable to ask which universe
levels i can be instantiated to. The goal of this section is to explain the relevant constraints.

In the standard library, there are two cases, depending on whether the inductive type
is specified to land in Prop. Let us first consider the case where the inductive type is not
specified to land in Prop, which is the only case that arises in the homotopy type theory
instantiation of the kernel. Recall that each constructor c in the definition of a family C of
inductive types is of the form

c : Π (a : A) (b : B[a]), C a p[a,b]

CHAPTER 6. INDUCTIVE TYPES 97

where a is a sequence of datatype parameters, b is the sequence of arguments to the
constructors, and p[a, b] are the indices, which determine which element of the inductive
family the construction inhabits. Then the universe level i of C is constrained to satisfy
the following:

For each constructor c as above, and each Bk[a] in the sequence B[a], if Bk[a]
: Type.{j}, we have i ≥ j.

In other words, the universe level i is required to be at least as large as the universe level
of each type that represents an argument to a constructor.

When the inductive type C is specified to land in Prop, there are no constraints on the
universe levels of the constructor arguments. But these universe levels do have a bearing
on the elimination rule. Generally speaking, for an inductive type in Prop, the motive of
the elimination rule is required to be in Prop. The exception we alluded to in the discussion
of equality above is this: we are allowed to eliminate to an arbitrary Type when there is
only one constructor, and each constructor argument is either in Prop or an index. This
exception, which makes it possible to treat ordinary equality and heterogeneous equality as
inductive types, can be justified by the fact that the elimination rule cannot take advantage
of any “hidden” information.

Because inductive types can be polymorphic over universe levels, whether an inductive
definition lands in Prop could, in principle, depend on how the universe levels are instanti-
ated. To simplify the generation of the recursors, Lean adopts a convention that rules out
this ambiguity: if you do not specify that the inductive type is an element of Prop, Lean
requires the universe level to be at least one. Hence, a type specified by single inductive
definition is either always in Prop or never in Prop. For example, if A and B are elements of
Prop, A × B is assumed to have universe level at least one, representing a datatype rather
than a proposition. The analogous definition of A × B, where A and B are restricted to
Prop and the resulting type is declared to be an element of Prop instead of Type, is exactly
the definition of A ∧ B.

7

Induction and Recursion

Other than the type universes and Pi types, inductively defined types provide the only
means of defining new types in the Calculus of Inductive Constructions. We have also seen
that, fundamentally, the constructors and the recursors provide the only means of defining
functions on these types. By the propositions-as-types correspondence, this means that
induction is the fundamental method of proof for these types.

Working with induction and recursion is therefore fundamental to working in the Cal-
culus of Inductive Constructions. For that reason Lean provides more natural ways of
defining recursive functions, performing pattern matching, and writing inductive proofs.
Behind the scenes, these are “compiled” down to recursors, using some of the auxiliary def-
initions described in Section Automatically Generated Constructions. Thus, the function
definition package, which performs this reduction, is not part of the trusted code base.

Pattern Matching
The cases_on recursor can be used to define functions and prove theorems by cases. But
complicated definitions may use several nested cases_on applications, and may be hard
to read and understand. Pattern matching provides a more convenient and standard way
of defining functions and proving theorems. Lean supports a very general form of pattern
matching called dependent pattern matching.

A pattern-matching definition is of the following form:

definition [name] [parameters] : [domain] → [codomain]
| [name] [patterns_1] := [value_1]
...
| [name] [patterns_n] := [value_n]

98

CHAPTER 7. INDUCTION AND RECURSION 99

The parameters are fixed, and each assignment defines the value of the function for a
different case specified by the given pattern. As a first example, we define the function
sub2 for natural numbers:

open nat

definition sub2 : nat → nat
| sub2 0 := 0
| sub2 1 := 0
| sub2 (a+2) := a

example : sub2 5 = 3 := rfl

The default compilation method guarantees that the pattern matching equations hold
definitionally.

example : sub2 0 = 0 := rfl

example : sub2 1 = 0 := rfl

example (a : nat) : sub2 (a + 2) = a := rfl

We can use the command print definition to inspect how our definition was compiled
into recursors.

print definition sub2

We will say a term is a constructor application if it is of the form c a_1 ... a_n
where c is the constructor of some inductive datatype. Note that in the definition sub2,
the terms 1 and a+2 are not constructor applications. However, the compiler normalizes
them at compilation time, and obtains the constructor applications succ zero and succ
(succ a) respectively. This normalization step is just a convenience that allows us to
write definitions resembling the ones found in textbooks. There is no magic here: the
compiler simply uses the kernel’s ordinary evaluation mechanism. If we had written 2+a,
the definition would be rejected since 2+a does not normalize into a constructor application.

In the next example, we use pattern-matching to define Boolean negation bnot, and
proving bnot (bnot b) = b.

open bool

definition bnot : bool → bool
| bnot tt := ff
| bnot ff := tt

theorem bnot_bnot : ∀ (b : bool), bnot (bnot b) = b
| bnot_bnot tt := rfl -- proof that bnot (bnot tt) = tt
| bnot_bnot ff := rfl -- proof that bnot (bnot ff) = ff

CHAPTER 7. INDUCTION AND RECURSION 100

As described in Chapter Inductive Types, Lean inductive datatypes can be parametric.
The following example defines the tail function using pattern matching. The argument
A : Type is a parameter and occurs before the colon to indicate it does not participate
in the pattern matching. Lean allows parameters to occur after :, but it cannot pattern
match on them.

import data.list
open list

definition tail {A : Type} : list A → list A
| tail nil := nil
| tail (h :: t) := t

-- Parameter A may occur after ':'
definition tail2 : Π {A : Type}, list A → list A
| tail2 (@nil A) := (@nil A)
| tail2 (h :: t) := t

-- @ is allowed on the left-hand-side
definition tail3 : Π {A : Type}, list A → list A
| @tail3 A nil := nil
| @tail3 A (h :: t) := t

-- A is explicit parameter
definition tail4 : Π (A : Type), list A → list A
| tail4 A nil := nil
| tail4 A (h :: t) := t

Structural Recursion and Induction
The function definition package supports structural recursion, that is, recursive applications
where one of the arguments is a subterm of the corresponding term on the left-hand-side.
Later, we describe how to compile recursive equations using well-founded recursion. The
main advantage of the default compilation method is that the recursive equations hold
definitionally.

Here are some examples from the last chapter, written in the new style:

definition add : nat → nat → nat
| add m zero := m
| add m (succ n) := succ (add m n)

infix `+` := add

theorem add_zero (m : nat) : m + zero = m := rfl
theorem add_succ (m n : nat) : m + succ n = succ (m + n) := rfl

theorem zero_add : ∀ n, zero + n = n
| zero_add zero := rfl
| zero_add (succ n) := eq.subst (zero_add n) rfl

CHAPTER 7. INDUCTION AND RECURSION 101

definition mul : nat → nat → nat
| mul n zero := zero
| mul n (succ m) := mul n m + m

The “definition” of zero_add makes it clear that proof by induction is really a form of
induction in Lean.

As with definition by pattern matching, parameters to a structural recursion or induc-
tion may appear before the colon. Such parameters are simply added to the local context
before the definition is processed. For example, the definition of addition may be written
as follows:

definition add (m : nat) : nat → nat
| add zero := m
| add (succ n) := succ (add n)

This may seem a little odd, but you should read the definition as follows: “Fix m, and
define the function which adds something to m recursively, as follows. To add zero, return
m. To add the successor of n, first add n, and then take the successor.” The mechanism
for adding parameters to the local context is what makes it possible to process match
expressions within terms, as described below.

A more interesting example of structural recursion is given by the Fibonacci function
fib. The subsequent theorem, fib_pos, combines pattern matching, recursive equations,
and calculational proof.

import data.nat
open nat algebra

definition fib : nat → nat
| fib 0 := 1
| fib 1 := 1
| fib (a+2) := fib (a+1) + fib a

-- the defining equations hold definitionally
example : fib 0 = 1 := rfl
example : fib 1 = 1 := rfl
example (a : nat) : fib (a+2) = fib (a+1) + fib a := rfl

-- fib is always positive
theorem fib_pos : ∀ n, 0 < fib n
| fib_pos 0 := show 0 < 1, from zero_lt_succ 0
| fib_pos 1 := show 0 < 1, from zero_lt_succ 0
| fib_pos (a+2) := show 0 < fib (a+1) + fib a, from calc

0 = 0 + 0 : rfl
... < fib (a+1) + 0 : add_lt_add_right (fib_pos (a+1)) 0
... < fib (a+1) + fib a : add_lt_add_left (fib_pos a) (fib (a+1))

Another classic example is the list append function.

CHAPTER 7. INDUCTION AND RECURSION 102

import data.list
open list

definition append {A : Type} : list A → list A → list A
| append nil l := l
| append (h::t) l := h :: append t l

example : append [(1 : N), 2, 3] [4, 5] = [1, 2, 3, 4, 5] := rfl

Dependent Pattern-Matching
All the examples we have seen so far can be easily written using cases_on and rec_on.
However, this is not the case with indexed inductive families, such as vector A n. A lot of
boilerplate code needs to be written to define very simple functions such as map, zip, and
unzip using recursors.

To understand the difficulty, consider what it would take to define a function tail
which takes a vector v : vector A (succ n) and deletes the first element. A first
thought might be to use the cases_on function:

open nat

inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n}, A → vector A n → vector A (succ n)

open vector
notation h :: t := cons h t

check @vector.cases_on
-- Π {A : Type}
-- {C : Π (a : N), vector A a → Type}
-- {a : N}
-- (n : vector A a),
-- (e1 : C 0 nil)
-- (e2 : Π {n : N} (a : A) (a_1 : vector A n), C (succ n) (cons a a_1)),
-- C a n

But what value should we return in the nil case? Something funny is going on: if v has
type vector A (succ n), it can’t be nil, but it is not clear how to tell that to cases_on.

One standard solution is to define an auxiliary function:

definition tail_aux {A : Type} {n m : nat} (v : vector A m) :
m = succ n → vector A n :=

vector.cases_on v
(assume H : 0 = succ n, nat.no_confusion H)
(take m (a : A) w : vector A m,

assume H : succ m = succ n,
have H1 : m = n, from succ.inj H,
eq.rec_on H1 w)

CHAPTER 7. INDUCTION AND RECURSION 103

definition tail {A : Type} {n : nat} (v : vector A (succ n)) : vector A n :=
tail_aux v rfl

In the nil case, m is instantiated to 0, and no_confusion (discussed in Section Automat-
ically Generated Constructions) makes use of the fact that 0 = succ n cannot occur.
Otherwise, v is of the form a :: w, and we can simply return w, after casting it from a
vector of length m to a vector of length n.

The difficulty in defining tail is to maintain the relationships between the indices. The
hypothesis e : m = succ n in tail_aux is used to “communicate” the relationship between
n and the index associated with the minor premise. Moreover, the zero = succ n case is
“unreachable,” and the canonical way to discard such a case is to use no_confusion.

The tail function is, however, easy to define using recursive equations, and the function
definition package generates all the boilerplate code automatically for us.

Here are a number of examples:

definition head {A : Type} : Π {n}, vector A (succ n) → A
| head (h :: t) := h

definition tail {A : Type} : Π {n}, vector A (succ n) → vector A n
| tail (h :: t) := t

theorem eta {A : Type} : ∀ {n} (v : vector A (succ n)), head v :: tail v = v
| eta (h::t) := rfl

definition map {A B C : Type} (f : A → B → C)
: Π {n : nat}, vector A n → vector B n → vector C n

| map nil nil := nil
| map (a::va) (b::vb) := f a b :: map va vb

definition zip {A B : Type} : Π {n}, vector A n → vector B n → vector (A × B) n
| zip nil nil := nil
| zip (a::va) (b::vb) := (a, b) :: zip va vb

Note that we can omit recursive equations for “unreachable” cases such as head nil. The
automatically generated definitions for indexed families are far from straightforward. For
example:

print map
/-
definition map : Π {A : Type} {B : Type} {C : Type},

(A → B → C) → (Π {n : N}, vector A n → vector B n → vector C n)
λ (A : Type) (B : Type) (C : Type) (f : A → B → C) {n : N}
(a : vector A n) (a_1 : vector B n),

nat.brec_on n
(λ {n : N} (b : nat.below n) (a : vector A n) (a_1 : vector B n),

nat.cases_on n
(λ (b : nat.below 0) (a : vector A 0) (a_1 : vector B 0),

(λ (t_1 : N) (a_2 : vector A t_1),
vector.cases_on a_2

CHAPTER 7. INDUCTION AND RECURSION 104

(λ (H_1 : 0 = 0) (H_2 : a == nil),
(λ (t_1 : N) (a_1_1 : vector B t_1),

vector.cases_on a_1_1
(λ (H_1 : 0 = 0) (H_2 : a_1 == nil), nil)
(λ (n : N) (a : B) (a_2 : vector B n)
(H_1 : 0 = succ n),

nat.no_confusion H_1))
0
a_1
(eq.refl 0)

-/

The map function is even more tedious to define by hand than the tail function. We
encourage you to try it, using rec_on, cases_on and no_confusion.

The name of the function being defined can be omitted from the left-hand side of
pattern matching equations. This feature is particularly useful when the function name is
long or there are many cases. When the name is omitted, Lean will silently include @f in
the left-hand-side of every pattern matching equation, where f is the name of the function
being defined. Here is an example:

variables {A B : Type}
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
| zero nil := (nil, nil)
| (succ n) ((a, b)::v) :=

match unzip v with
(va, vb) := (a :: va, b :: vb)

end

example : unzip (((1 : N), (10 : N)) :: (2, 20) :: nil) =
(1 :: 2 :: nil, 10 :: 20 :: nil) :=

rfl

Variations on Pattern Matching
We say that a set of recursive equations overlaps when there is an input that more than
one left-hand-side can match. In the following definition the input 0 0 matches the left-
hand-side of the first two equations. Should the function return 1 or 2?

definition f : nat → nat → nat
| f 0 y := 1
| f x 0 := 2
| f (x+1) (y+1) := 3

Overlapping patterns are often used to succinctly express complex patterns in data, and
they are allowed in Lean. Lean handles the ambiguity by using the first applicable equation.
In the example above, the following equations hold definitionally:

CHAPTER 7. INDUCTION AND RECURSION 105

variables (a b : nat)

example : f 0 0 = 1 := rfl
example : f 0 (a+1) = 1 := rfl
example : f (a+1) 0 = 2 := rfl
example : f (a+1) (b+1) = 3 := rfl

Lean also supports wildcard patterns, also known as anonymous variables. They are
used to create patterns where we don’t care about the value of a specific argument. In the
function f defined above, the values of x and y are not used in the right-hand-side. Here
is the same example using wildcards:

open nat
definition f : nat → nat → nat
| f 0 _ := 1
| f _ 0 := 2
| f _ _ := 3
variables (a b : nat)
example : f 0 0 = 1 := rfl
example : f 0 (a+1) = 1 := rfl
example : f (a+1) 0 = 2 := rfl
example : f (a+1) (b+1) = 3 := rfl

Some functional languages support incomplete patterns. In these languages, the inter-
preter produces an exception or returns an arbitrary value for incomplete cases. We can
simulate the arbitrary value approach using the inhabited type class, discussed in Chapter
Type Classes. Roughly, an element of inhabited A is simply a witness to the fact that
there is an element of A; in Chapter Type Classes, we will see that Lean can be instructed
that suitable base types are inhabited, and can automatically infer that other constructed
types are inhabited on that basis. On this basis, the standard library provides an arbitrary
element, arbitrary A, of any inhabited type.

We can also use the type option A to simulate incomplete patterns. The idea is to
return some a for the provided patterns, and use none for the incomplete cases. The
following example demonstrates both approaches.

open nat option

definition f1 : nat → nat → nat
| f1 0 _ := 1
| f1 _ 0 := 2
| f1 _ _ := arbitrary nat -- the "incomplete" case

variables (a b : nat)

example : f1 0 0 = 1 := rfl
example : f1 0 (a+1) = 1 := rfl
example : f1 (a+1) 0 = 2 := rfl
example : f1 (a+1) (b+1) = arbitrary nat := rfl

CHAPTER 7. INDUCTION AND RECURSION 106

definition f2 : nat → nat → option nat
| f2 0 _ := some 1
| f2 _ 0 := some 2
| f2 _ _ := none -- the "incomplete" case

example : f2 0 0 = some 1 := rfl
example : f2 0 (a+1) = some 1 := rfl
example : f2 (a+1) 0 = some 2 := rfl
example : f2 (a+1) (b+1) = none := rfl

Inaccessible Terms
Sometimes an argument in a dependent matching pattern is not essential to the definition,
but nonetheless has to be included to specialize the type of the expression appropriately.
Lean allows users to mark such subterms as inaccessible for pattern matching. These
annotations are essential, for example, when a term occurring in the left-hand side is
neither a variable nor a constructor application, because these are not suitable targets for
pattern matching. We can view such inaccessible terms as “don’t care” components of the
patterns. You can declare a subterm inaccesible by writing ⌞t⌟ (the brackets are entered
as \cll and \clr, for “corner-lower-left” and “corner-lower-right”) or ?(t).

The following example can be found in [3]. We declare an inductive type that defines
the property of “being in the image of f”. You can view an element of the type image_of
f b as evidence that b is in the image of f, whereby the constructor imf is used to build
such evidence. We can then define any function f with an “inverse” which takes anything
in the image of f to an element that is mapped to it. The typing rules forces us to write f
a for the first argument, but this term is not a variable nor a constructor application, and
plays no role in the pattern-matching definition. To define the function inverse below, we
have to mark f a inaccessible.

variables {A B : Type}
inductive image_of (f : A → B) : B → Type :=
imf : Π a, image_of f (f a)

open image_of

definition inverse : Π f : A → B, Π b, image_of f b → A
| inverse f ⌞f a⌟ (imf _ _) := a

Inaccessible terms can also be used to reduce the complexity of the generated definition.
Dependent pattern matching is compiled using the cases_on and no_confusion construc-
tions. The number of instances of cases_on introduced by the compiler can be reduced
by marking parts that only report specialization. In the next example, we define the type
of finite ordinals finord n, a type with n inhabitants. We also define the function to_nat

CHAPTER 7. INDUCTION AND RECURSION 107

that maps an element of finord n to an elmeent of nat. If we do not mark n+1 as inac-
cessible, the compiler will generate a definition containing two cases_on expressions. We
encourage you to replace ⌞n+1⌟ with (n+1) in the next example and inspect the generated
definition using print definition to_nat.

open nat

inductive finord : nat → Type :=
| fz : Π n, finord (succ n)
| fs : Π {n}, finord n → finord (succ n)

open finord

definition to_nat : Π {n : nat}, finord n → nat
| @to_nat ⌞n+1⌟ (fz n) := zero
| @to_nat ⌞n+1⌟ (fs f) := succ (to_nat f)

Match Expressions
Lean also provides a compiler for match-with expressions found in many functional lan-
guages. It uses essentially the same infrastructure used to compile recursive equations.

definition is_not_zero (a : nat) : bool :=
match a with
| zero := ff
| succ _ := tt
end

-- We can use recursive equations and match
variable {A : Type}
variable p : A → bool

definition filter : list A → list A
| filter nil := nil
| filter (a :: l) :=

match p a with
| tt := a :: filter l
| ff := filter l
end

example : filter is_not_zero [1, 0, 0, 3, 0] = [1, 3] := rfl

You can also use pattern matching in a local have expression:

import data.nat logic
open bool nat

definition mult : nat → nat → nat :=
have plus : nat → nat → nat
| 0 b := b

CHAPTER 7. INDUCTION AND RECURSION 108

| (succ a) b := succ (plus a b),
have mult : nat → nat → nat
| 0 b := 0
| (succ a) b := plus (mult a b) b,
mult

Other Examples
In some definitions, we have to help the compiler by providing some implicit arguments
explicitly in the left-hand-side of recursive equations. In such cases, if we don’t provide the
implicit arguments, the elaborator is unable to solve some placeholders (i.e.~meta-variables)
in the nested match expression.

variables {A B : Type}
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
| @unzip zero nil := (nil, nil)
| @unzip (succ n) ((a, b)::v) :=

match unzip v with
(va, vb) := (a :: va, b :: vb)

end

example : unzip (((1 : N), (10 : N)) :: (2, 20) :: nil) =
(1 :: 2 :: nil, 10 :: 20 :: nil) :=

rfl

Next, we define the function diag which extracts the diagonal of a square matrix vector
(vector A n) n. Note that, this function is defined by structural induction. However, the
term map tail v is not a subterm of ((a :: va) :: v). Could you explain what is
going on?

variables {A B : Type}

definition tail : Π {n}, vector A (succ n) → vector A n
| tail (h :: t) := t

definition map (f : A → B)
: Π {n : nat}, vector A n → vector B n

| map nil := nil
| map (a::va) := f a :: map va

definition diag : Π {n : nat}, vector (vector A n) n → vector A n
| diag nil := nil
| diag ((a :: va) :: v) := a :: diag (map tail v)

Well-Founded Recursion
[TODO: write this section.]

8

Building Theories and Proofs

In this chapter, we return to a discussion of some of the pragmatic features of Lean that
support the development of structured theories and proofs.

More on Coercions
In Section Coercions, we discussed coercions briefly. The goal of this section is to provide
a more precise account.

The most basic type of coercion maps elements of one type to another. For example,
a coercion from nat to int allows us to view any element n : nat as an element of int.
But some coercions depend on parameters; for example, for any type A, we can view any
element l : list A as an element of set A, namely, the set of elements occurring in the
list. The corresponding coercion is defined on the “family” of types list A, parameterized
by A.

In fact, Lean allows us to declare three kinds of coercions:

• from a family of types to another family of types

• from a family of types to the class of sorts

• from a family of types to the class of function types

The first kind of coercion allows us to view any element of a member of the source family
as an element of a corresponding member of the target family. The second kind of coercion
allows us to view any element of a member of the source family as a type. The third kind of
coercion allows us to view any element of the source family as a function. Let us consider
each of these in turn.

109

CHAPTER 8. BUILDING THEORIES AND PROOFS 110

In type theory terminology, an element F : Π x1 : A1, ..., xn : An, Type is
called a family of types. For every sequence of arguments a1 : A1, ..., an : An, F a1
... an is a type, so we think of F as being a family parameterized by these arguments. A
coercion of the first kind is of the form

c : Π x1 : A1, ..., xn : An, y : F x1 ... xn, G b1 ... bm

where G is another family of types, and the terms b1 ... bn depend on x1, ..., xn, y.
This allows us to write f t where t is of type F a1 ... an but f expects an argument
of type G y1 ... ym, for some y1 ... ym. For example, if F is list : Π A : Type,
Type, G is set Π A : Type, Type, then a coercion c : Π A : Type, list A → set A
allows us to pass an argument of type list T for some T any time an element of type set
T is expected. These are the types of coercions we considered in Section Coercions.

Let us now consider the second kind of coercion. By the class of sorts, we mean the
collection of universes Type.{i}. A coercion of the second kind is of the form

c : Π x1 : A1, ..., xn : An, F x1 ... xn → Type

where F is a family of types as above. This allows us to write s : t whenever t is of type
F a1 ... an. In other words, the coercion allows us to view the elements of F a1 ...
an as types. We will see in a later chapter that this is very useful when defining algebraic
structures in which one component, the carrier of the structure, is a Type. For example,
we can define a semigroup as follows:

structure Semigroup : Type :=
(carrier : Type)
(mul : carrier → carrier → carrier)
(mul_assoc : ∀ a b c : carrier, mul (mul a b) c = mul a (mul b c))

notation a `*` b := Semigroup.mul _ a b

In other words, a semigroup consists of a type, carrier, and a multiplication, mul, with
the property that the multiplication is associative. The notation command allows us
to write a * b instead of Semigroup.mul S a b whenever we have a b : carrier
S; notice that Lean can infer the argument S from the types of a and b. The function
Semigroup.carrier maps the class Semigroup to the sort Type:

check Semigroup.carrier

If we declare this function to be a coercion, then whenever we have a semigroup S :
Semigroup, we can write a : S instead of a : Semigroup.carrier S:

CHAPTER 8. BUILDING THEORIES AND PROOFS 111

attribute Semigroup.carrier [coercion]

example (S : Semigroup) (a b : S) : a * b * a = a * (b * a) :=
!Semigroup.mul_assoc

It is the coercion that makes it possible to write (a b : S).
By the class of function types, we mean the collection of Pi types Π z : B, C. The

third kind of coercion has the form

c : Π x1 : A1, ..., xn : An, y : F x1 ... xn, Π z : B, C

where F is again a family of types and B and C can depend on x1, ..., xn, y. This
makes it possible to write t s whenever t is an element of F a1 ... an. In other words,
the coercion enables us to view elements of F a1 ... an as functions. Continuing the
example above, we can define the notion of a morphism between semigroups:

structure morphism (S1 S2 : Semigroup) : Type :=
(mor : S1 → S2)
(resp_mul : ∀ a b : S1, mor (a * b) = (mor a) * (mor b))

In other words, a morphism from S1 to S2 is a function from the carrier of S1 to the
carrier of S2 (note the implicit coercion) that respects the multiplication. The projection
morphism.mor takes a morphism to the underlying function:

check morphism.mor -- morphism ?S1 ?S2 → ?S1 → ?S2

As a result, it is a prime candidate for the third type of coercion.

attribute morphism.mor [coercion]

example (S1 S2 : Semigroup) (f : morphism S1 S2) (a : S1) :
f (a * a * a) = f a * f a * f a :=

calc
f (a * a * a) = f (a * a) * f a : morphism.resp_mul f

... = f a * f a * f a : morphism.resp_mul f

With the coercion in place, we can write f (a * a * a) instead of morphism.mor f (a
* a * a). When the morphism, f, is used where a function is expected, Lean inserts the
coercion.

Remember that you can create a coercion whose scope is limited to the current names-
pace or section using the local modifier:

local attribute morphism.mor [coercion]

CHAPTER 8. BUILDING THEORIES AND PROOFS 112

You can also declare a persistent coercion by assigning the attribute when you define
the function initially, as described in Section Coercions. Coercions that are defined in a
namespace “live” in that namespace, and are made active when the namespace is opened.
If you want a coercion to be active as soon as a module is imported, be sure to declare it
at the “top level,” i.e. outside any namespace.

Remember also that you can instruct Lean’s pretty-printer to show coercions with
set_option, and you can print all the coercions in the environment using print
coercions:

theorem test (S1 S2 : Semigroup) (f : morphism S1 S2) (a : S1) :
f (a * a * a) = f a * f a * f a :=

calc
f (a * a * a) = f (a * a) * f a : morphism.resp_mul f

... = f a * f a * f a : morphism.resp_mul f

set_option pp.coercions true
check test

print coercions

Lean will also chain coercions as necessary. You can think of the coercion declarations
as forming a directed graph where the nodes are families of types and the edges are the
coercions between them. More precisely, each node is either a family of types, or the class
of sorts, of the class of function types. The latter two are sinks in the graph. Internally,
Lean automatically computes the transitive closure of this graph, in which the “paths”
correspond to chains of coercions.

More on Implicit Arguments
In Section Implicit Arguments, we discussed implicit arguments. For example, if a term t
has type Π {x : A}, P x, the variable x is implicit in t, which means that whenever you
write t, a placeholder, or “hole,” is inserted, so that t is replaced by @t _. If you don’t
want that to happen, you have to write @t instead.

Dual to the @ symbol is the exclamation mark, !, which essentially makes explicit
arguments implicit by inserting underscores for them. Look at the terms that result from
the following definitions to see this in action:

definition foo (n m k l : N) : (n - m) * (k + l) = (k + l) * (n - m) := !mul.comm

print foo
-- definition foo : ∀ (n m k l : N), (n - m) * (k + l) = (k + l) * (n - m)
-- λ (n m k l : N), mul.comm (n - m) (k + l)

definition foo2 (n m k l : N) : (n + k) + l = (k + l) + n := !add.assoc · !add.comm

print foo2

CHAPTER 8. BUILDING THEORIES AND PROOFS 113

-- definition foo2 : ∀ (n : N), N → (∀ (k l : N), n + k + l = k + l + n)
-- λ (n m k l : N), add.assoc n k l · add.comm n (k + l)

definition foo3 (l : N) (H : ∀ (n : N), l + 2 ̸= 2 * (n + 1)) (n : N) : l ̸= 2 * n :=
assume K : l = 2 * n,
absurd (show l + 2 = 2 * n + 2, from K ▶ rfl) !H

print foo3
-- definition foo3 : ∀ (l : N),
-- (∀ (n : N), l + 2 ̸= 2 * (n + 1)) → (∀ (n : N), l ̸= 2 * n)
-- λ (l : N) (H : ∀ (n : N), l + 2 ̸= 2 * (n + 1)) (n : N)
-- (K : l = 2 * n),
-- absurd (show l + 2 = 2 * n + 2, from K ▶ rfl) (H n)

In the first two examples, the exclamation mark indicates that the arguments to mul.comm,
add.assoc, and add.comm should be made implicit, saving us the trouble of having to
write lots of underscores. Note, by the way, that in the last example we use a neat trick:
to show l + 2 = 2 * n + 2 we take the reflexivity proof rfl : l + 2 = l + 2 and then
substitute 2 * n for the second l.

More precisely, if t is of a function type, the expression !t makes all the arguments
implicit up until the first argument that cannot be inferred from later arguments or the
return type. This is usually what you want; for example, when applying a theorem, the
arguments can often be inferred from context, but the hypothesis need to be provided
explicitly.

In the following example, we declare P and p without implicit arguments, and then use
the exclamation mark to make them implicit after the fact.

variables (P : Π (n m : N) (v : vector bool n) (w : vector bool m), Type)
(p : Π (n m : N) (v : vector bool n) (w : vector bool m), P n m v w)
(n m : N) (v : vector bool n) (w : vector bool m)

set_option pp.metavar_args false
eval (!p : P n m v w) -- p n m v w
eval (!p : P n n v v) -- p n n v v
check !p -- p ?n ?m ?v ?w : P ?n ?m ?v ?w

eval (!P v w : Type) -- P n m v w
eval (!p : !P w v) -- p m n w v

Notice that we set pp.metavar_args to simplify the output. In the first eval, the expres-
sion !p inserts underscores for all explicit arguments of p, because the values of all of the
placeholders in p _ _ _ _ can be inferred from its type P n m v w. The same is true in
the second example. In the subsequent check statement, the arguments of p are inserted,
but cannot be inferred. Hence there are still metavariables in the output.

For P things are different: if we know that the type of P _ _ _ _ is Type, we don’t
have enough information to assign values to the holes. However, we can fill the first two
holes if we are given the last two arguments. Thus !P v w is interpreted as P _ _ v w,
and from this we can infer that the holes must be n and m, respectively.

CHAPTER 8. BUILDING THEORIES AND PROOFS 114

Here are some more examples of this behavior.

check @add_lt_add_right

definition foo (n m k : N) (H : n < m) : n + k < m + k := !(add_lt_add_right H)

example {n m k l : N} (H : n < m) (K : m + l < k + l) : n < k + l :=
calc

n ≤ n + l : !le_add_right
... < m + l : !foo H
... < k + l : K

In the following example we show that a reflexive euclidean relation is both symmetric
and transitive. Notice that we set the variable R to be an explicit argument of reflexive,
symmetric, transitive and euclidean. However, for the theorems it is more convenient
to make R implicit. We can do this with the command variable {R}, which makes R
implicit from that point on.

variables {A : Type} (R : A → A → Prop)

definition reflexive : Prop := ∀ (a : A), R a a
definition symmetric : Prop := ∀ {a b : A}, R a b → R b a
definition transitive : Prop := ∀ {a b c : A}, R a b → R b c → R a c
definition euclidean : Prop := ∀ {a b c : A}, R a b → R a c → R b c

variable {R}

theorem th1 (refl : reflexive R) (eucl : euclidean R) : symmetric R :=
take a b : A, assume (H : R a b),
show R b a, from eucl H !refl

theorem th2 (symm : symmetric R) (eucl : euclidean R) : transitive R :=
take (a b c : A), assume (H : R a b) (K : R b c),
have H' : R b a, from symm H,
show R a c, from eucl H' K

-- ERROR:
/-

theorem th3 (refl : reflexive R) (eucl : euclidean R) : transitive R :=
th2 (th1 refl eucl) eucl

-/

theorem th3 (refl : reflexive R) (eucl : euclidean R) : transitive R :=
@th2 _ _ (@th1 _ _ @refl @eucl) @eucl

However, when we want to combine th1 and th2 into th3 we notice something funny. If
we just write the proof th2 (th1 refl eucl) eucl we get an error. The reason is that
eucl has type ∀ {a b c : A}, R a b → R a c → R b c, hence eucl is interpreted as
@eucl _ _ _. Similarly, the types of th1 and th2 start with a quantification over implicit
arguments, hence they are interpreted as th1 _ _ and th2 _ _ _, respectively. We can
solve this by writing @eucl, @th1 and @th2, but this is very inconvenient.

CHAPTER 8. BUILDING THEORIES AND PROOFS 115

A better solution is to use a weaker form of implicit argument, marked with the binders
{| and |}, or, equivalently, {{ and }}. The first two can be inserted by typing \{{ and \}},
respectively.

definition symmetric : Prop := ∀ {|a b : A|}, R a b → R b a
definition transitive : Prop := ∀ {|a b c : A|}, R a b → R b c → R a c
definition euclidean : Prop := ∀ {|a b c : A|}, R a b → R a c → R b c

Arguments in these binders are still implicit, but they are not added to a term t until t is
applied to something. In other words, given an expression t of function type, if the next
argument to t is a strong implicit argument, marked with { and }, that implicit argument
is asserted aggressively; if the next argument to t is a weaker implicit argument, marked
with {| and |}, the implicit argument is not inserted unless the term is applied to something
else. With H : symmetric R, this is what we want. Because we now have H : ∀ {|a b :
A|}, R a b → R b a, the expression H is interpreted as @H, but H p is interpreted as @H _
_ p. This allows us to prove th3 in the expected way.

theorem th3 (refl : reflexive R) (eucl : euclidean R) : transitive R :=
th2 (th1 refl eucl) eucl

There is a third kind of implicit argument, used for type classes, and denoted with
square brackets, [amd]. We will explain these kinds of arguments in Chapter Type
Classes.

Elaboration and Unification
When you enter an expression like λ x y z, f (x + y) z for Lean to process, you are
leaving information implicit. For example, the types of x, y, and z have to be inferred from
the context, the notation + may be overloaded, and there may be implicit arguments to f
that need to be filled in as well.

The process of taking a partially-specified expression and inferring what is left implicit
is known as elaboration. Lean’s elaboration algorithm is powerful, but at the same time,
subtle and complex. Working in a system of dependent type theory requires knowing what
sorts of information the elaborator can reliably infer, as well as knowing how to respond
to error messages that are raised when the elaborator fails. To that end, it is helpful to
have a general idea of how Lean’s elaborator works.

When Lean is parsing an expression, it first enters a preprocessing phase. First, Lean
inserts “holes” for implicit arguments. If term t has type Π {x : A}, P x, then t is
replaced by @t _ everywhere. Then, the holes — either the ones inserted in the previous
step or the ones explicitly written by the user — in a term are instantiated by metavariables
?M1, ?M2, ?M3, Each overloaded notation is associated with a list of choices, that

CHAPTER 8. BUILDING THEORIES AND PROOFS 116

is, the possible interpretations. Similarly, Lean tries to detect the points where a coercion
may need to be inserted in an application s t, to make the inferred type of t match
the argument type of s. These become choice points too. If one possible outcome of the
elaboration procedure is that no coercion is needed, then one of the choices on the list is
the identity.

After preprocessing, Lean extracts a list of constraints that need to be solved in order
for the term to have a valid type. Each application term s t gives rise to a constraint T1
= T2, where t has type T1 and s has type Π x : T2, T3. Notice that the expressions
T1 and T2 will often contain metavariables; they may even be metavariables themselves.
Moreover, a definition of the form definition foo : T := t or a theorem of the form
theorem bar : T := t generates the constraint that the inferred type of t should be T.

The elaborator now has a straightforward task: find expressions to substitute for all
the metavariables so that all of the constraints are simultaneously satisfied. An assignment
of terms to metavariables is known as a substitution, and the general task of finding a
substitution that makes two expressions coincide is known as a unification problem. (If
only one of the expressions contains metavariables, the task is a special case known as a
matching problem.)

Some constraints are straightforwardly handled. If f and g are distinct constants, it is
clear that there is no way to unify the terms f s_1 ... s_m and g t_1 ... t_n. On the
other hand, one can unify f s_1 ... s_m and f t_1 ... t_m by unifying s_1 with t_1,
s_2 with t_2, and so on. If ?M is a metavariable, one can unify ?M with any term t simply
by assigning t to ?M. These are all aspects of first-order unification, and such constraints
are solved first.

In contrast, higher-order unification is much more tricky. Consider, for example, the
expressions ?M a b and f (g a) b b. All of the following assignments to ?M are among
the possible solutions:

• λ x y, f (g x) y y

• λ x y, f (g x) y b

• λ x y, f (g a) b y

• λ x y, f (g a) b b

Such problems arise in many ways. For example:

• When you use induction_on x for an inductively defined type, Lean has to infer the
relevant induction predicate.

• When you write eq.subst e p with an equation e : a = b to convert a proposition
P a to a proposition P b, Lean has to infer the relevant predicate.

CHAPTER 8. BUILDING THEORIES AND PROOFS 117

• When you write sigma.mk a b to build an element of Σ x : A, B x from an element
a : A and an element B : B a, Lean has to infer the relevant B. (And notice that
there is an ambiguity; sigma.mk a b could also denote an element of Σ x : A, B
a, which is essentially the same as A × B a.)

In cases like this, Lean has to perform a backtracking search to find a suitable value of
a higher-order metavariable. It is known that even second-order unification is generally
undecidable. The algorithm that Lean uses is not complete (which means that it can
fail to find a solution even if one exists) and potentially nonterminating. Nonetheless, it
performs quite well in ordinary situations.

Moreover, the elaborator performs a global backtracking search over all the nondeter-
ministic choice points introduced by overloads and coercions. In other words, the elaborator
starts by trying to solve the equations with the first choice on each list. Each time the
procedure fails, it analyzes the failure, and determines the next viable choice to try.

To complicate matters even further, sometimes the elaborator has to reduce terms using
the internal computation rules of the formal system. For example, if it happens to be the
case that f is defined to be λ x, g x x, we can unify expressions f ?M and g a a by
assigning ?M to a. In general, any number of computation steps may be needed to unify
terms. It is computationally infeasible to try all possible reductions in the search, so, once
again, Lean’s elaborator relies on an incomplete strategy.

The interaction of computation with higher-order unification is particularly knotty.
For the most part, Lean avoids performing computational reduction when trying to solve
higher-order constraints. You can override this, however, by marking some symbols with
the reducible attribute, as described in Section 8.4.

The elaborator relies on additional tricks and gadgets to solve a list of constraints
and instantiate metavariables. Below we will see that users can specify that some parts
of terms should be filled in by tactics, which can, in turn, invoke arbitrary automated
procedures. In the next chapter, we will discuss the mechanism of class inference,
which can be configured to execute a prolog-like search for appropriate instantiations of an
implicit argument. These can be used to help the elaborator find implicit facts on the fly,
such as the fact that a particular set is finite, as well as implicit data, such as a default
element of a type, or the appropriate multiplication in an algebraic structure.

It is important to keep in mind that all these mechanisms interact. The elaborator
processes its list of constraints, trying to solve the easier ones first, postponing others un-
til more information is available, and branching and backtracking at choice points. Even
small proofs can generate hundreds or thousands of constraints. The elaboration process
continues until the elaborator fails to solve a constraint and has exhausted all its back-
tracking options, or until all the constraints are solved. In the first case, it returns an error
message which tries to provide the user with helpful information as to where and why it
failed. In the second case, the type checker is asked to confirm that the assignment that the
elaborator has found does indeed make the term type check. If all the metavariables in the

CHAPTER 8. BUILDING THEORIES AND PROOFS 118

original expression have been assigned, the result is a fully elaborated, type-correct expres-
sion. Otherwise, Lean flags the sources of the remaining metavariables as “placeholders”
or “goals” that could not be filled.

Reducible Definitions
Transparent identifiers can be declared to be reducible or irreducible or semireducible. By
default, a definition is semireducible. This status provides hints that govern the way the
elaborator tries to solve higher-order unification problems. As with other attributes, the
status of an identifier with respect to reducibility has no bearing on type checking at all,
which is to say, once a fully elaborated term is type correct, marking one of the constants
it contains to be reducible does not change the correctness. The type checker in the kernel
of Lean ignores such attributes, and there is no problem marking a constant reducible at
one point, and then irreducible later on, or vice-versa.

The purpose of the annotation is to help Lean’s unification procedure decide which
declarations should be unfolded. The higher-order unification procedure has to perform
case analysis, implementing a backtracking search. At various stages, the procedure has to
decide whether a definition C should be unfolded or not.

• An irreducible definition will never be unfolded during higher-order unification (but
can still be unfolded in other situations, for example during type checking).

• A reducible definition will be always eligible for unfolding.

• A definition which is semireducible can be unfolded during simple decisions and won’t
be unfolded during complex decisions. An unfolding decision is simple if the unfolding
does not require the procedure to consider an extra case split. It is complex if the
unfolding produces at least one extra case, and consequently increases the search
space.

You can assign the reducible attribute when a symbol is defined:

definition pr1 [reducible] (A : Type) (a b : A) : A := a

The assignment persists to other modules. You can achieve the same result with the
attribute command:

definition pr2 (A : Type) (a b : A) : A := b

-- mark pr2 as reducible
attribute pr2 [reducible]

-- mark pr2 as irreducible
attribute pr2 [irreducible]

CHAPTER 8. BUILDING THEORIES AND PROOFS 119

The local modifier can be used to instruct Lean to limit the scope to the current
namespace or section.

definition pr2 (A : Type) (a b : A) : A := b

local attribute pr2 [irreducible]

When reducibility hints are declared in a namespace, their scope is restricted to the names-
pace. In other words, even if you import the module in which the attributes are declared,
they do not take effect until the namespace is opened. As with coercions, if you want a
reducibility attribute to be set whenever a module is imported, be sure to declare it at
the top level. See also Section 8.7 below for more information on how to import only the
reducibility attributes, without exposing other aspects of the namespace.

Finally, we can go back to semireducible using the attribute command:

-- pr2 is semireducible
definition pr2 (A : Type) (a b : A) : A := b

-- mark pr2 as reducible
attribute pr2 [reducible]
-- ...
-- make it semireducible again
attribute pr2 [semireducible]

Helping the Elaborator
Because proof terms and expressions in dependent type theory can become quite complex,
working in dependent type theory effectively involves relying on the system to fill in details
automatically. When the elaborator fails to elaborate a term, there are two possibilities.
One possibility is that there is an error in the term, and no solution is possible. In that
case, your goal, as the user, is to find the error and correct it. The second possibility is
that the term has a valid elaboration, but the elaborator failed to find it. In that case, you
have to help the elaborator along by providing information. This section provides some
guidance in both situations.

If the error message is not sufficient to allow you to identify the problem, a first strategy
is to ask Lean’s pretty printer to show more information, as discussed in Section Setting
Options, using some or all of the following options:

set_option pp.implicit true
set_option pp.universes true
set_option pp.notation false
set_option pp.coercions true
set_option pp.numerals false
set_option pp.full_names true

CHAPTER 8. BUILDING THEORIES AND PROOFS 120

The following option subsumes all of those settings:

set_option pp.all true

Sometimes, the elaborator will fail with the message that the unifier has exceeded its
maximum number of steps. As we noted in the last section, some elaboration problems
can lead to nonterminating behavior, and so Lean simply gives up after it has reached a
pre-set maximum. You can change this with the set_option command:

set_option unifier.max_steps 100000

This can sometimes help you determine whether there is an error in the term or whether
the elaboration problem has simply grown too complex. In the latter case, there are steps
you can take to cut down the complexity.

To start with, Lean provides a mechanism to break large elaboration problems down
into simpler ones, with a proof ... qed block. Here is the sample proof from Section
Examples of Propositional Validities, with additional proof ... qed annotations:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
iff.intro

(assume H : p ∧ (q ∨ r),
show (p ∧ q) ∨ (p ∧ r), from
proof

have Hp : p, from and.elim_left H,
or.elim (and.elim_right H)

(assume Hq : q,
show (p ∧ q) ∨ (p ∧ r), from or.inl (and.intro Hp Hq))

(assume Hr : r,
show (p ∧ q) ∨ (p ∧ r), from or.inr (and.intro Hp Hr))

qed)
(assume H : (p ∧ q) ∨ (p ∧ r),

show p ∧ (q ∨ r), from
proof
or.elim H

(assume Hpq : p ∧ q,
have Hp : p, from and.elim_left Hpq,
have Hq : q, from and.elim_right Hpq,
show p ∧ (q ∨ r), from and.intro Hp (or.inl Hq))

(assume Hpr : p ∧ r,
have Hp : p, from and.elim_left Hpr,
have Hr : r, from and.elim_right Hpr,
show p ∧ (q ∨ r), from and.intro Hp (or.inr Hr))

qed)

Writing proof t qed as a subterm of a larger term breaks up the elaboration problem as
follows: first, the elaborator tries to elaborate the surrounding term, independent of t. If it
succeeds, that solution is used to constrain the type of t, and the elaborator processes that
term independently. The net result is that a big elaboration problem gets broken down

CHAPTER 8. BUILDING THEORIES AND PROOFS 121

into smaller elaboration problems. This “localizes” the elaboration procedure, which has
both positive and negative effects. A disadvantage is that information is insulated, so that
the solution to one problem cannot inform the solution to another. The key advantage is
that it can simplify the elaborator’s task. For example, backtracking points within a proof
... qed do not become backtracking points for the outside term; the elaborator either
succeeds or fails to elaborate each independently. As another benefit, error messages are
often improved; an error that ultimately stems from an incorrect choice of an overload in
one subterm is not “blamed” on another part of the term.

In principle, one can write proof t qed for any term t, but it is used most effectively
following a have or show, as in the example above. This is because have and show spec-
ify the intended type of the proof ... qed block, reducing any ambiguity about the
subproblem the elaborator needs to solve.

The use of proof ... qed blocks with have and show illustrates two general strategies
that can help the elaborator: first, breaking large problems into smaller problems, and, sec-
ond, providing additional information. The first strategy can also be achieved by breaking
a large definition into smaller definitions, or breaking a theorem with a large proof into
auxiliary lemmas. Even breaking up long terms internal to a proof using auxiliary have
statements can help locate the source of an error.

The second strategy, providing additional information, can be achieved by using have,
show, (t : T) notation, and #<namespace> (see Section Coercions) to indicate expected
types. More directly, it often helps to specify the implicit arguments. When Lean cannot
solve for the value of a metavariable corresponding to an implicit argument, you can always
use @ to provide that argument explicitly. Doing so will either help the elaborator solve the
elaboration problem, or help you find an error in the term that is blocking the intended
solution.

In Lean, tactics not only allow us to invoke arbitrary automated procedures, but also
provide an alternative approach to construct proofs and terms. For many users, this is
one of the most effective mechanisms to help the elaborator. A tactic can be viewed as
a “recipe”, a sequence of commands or instructions, that describes how to build a proof.
This recipe may be as detailed as we want. A tactic T can be embedded into proof terms
by writing by T or begin T end. These annotations instruct Lean that tactic T should be
invoked to construct the term in the given location. As with proof ... qed, the elaborator
tries to elaborate the surrounding terms before executing T. In fact, the expression proof
t qed is just syntactic sugar for by exact t, which invokes the exact tactic. We will
discuss tactics in Chapter Tactic-Style Proofs.

If you are running Lean using Emacs, you can “profile” the elaborator and type checker,
to find out where they are spending all their time. Type M-x lean-execute to run an
independent Lean process manually and add the option --profile. The output buffer will
then report the times required by the elaborator and type checker, for each definition and
theorem processed. If you ever find the system slowing down while processing a file, this
can help you locate the source of the problem.

CHAPTER 8. BUILDING THEORIES AND PROOFS 122

Sections
Lean provides various sectioning mechanisms that help structure a theory. We saw in
Section Variables and Sections that the section command makes it possible not only to
group together elements of a theory that go together, but also to declare variables that are
inserted as arguments to theorems and definitions, as necessary. In fact, Lean has two ways
of introducing local elements into the sections, namely, as variables or as parameters.

Remember that the point of the variable command is to declare variables for use in
theorems, as in the following example:

import standard
open nat algebra

section
variables x y : N

definition double := x + x

check double y
check double (2 * x)

theorem t1 : double x = 2 * x :=
calc
double x = x + x : rfl

... = 1 * x + x : one_mul

... = 1 * x + 1 * x : one_mul

... = (1 + 1) * x : right_distrib

... = 2 * x : rfl

check t1 y
check t1 (2 * x)

theorem t2 : double (2 * x) = 4 * x :=
calc
double (2 * x) = 2 * (2 * x) : t1

... = 2 * 2 * x : mul.assoc

... = 4 * x : rfl
end

The definition of double does not have to declare x as an argument; Lean detects the
dependence and inserts it automatically. Similarly, Lean detects the occurrence of x in
t1 and t2, and inserts it automatically there, too. Note that double does not have y as
argument. Variables are only included in declarations where they are actually mentioned.
To ask Lean to include a variable in every definition in a section, use the include command.
This is often useful with type classes, and is discussed in Section Instances in Sections in
the next chapter.

Notice that the variable x is generalized immediately, so that even within the section
double is a function of x, and t1 and t2 depend explicitly on x. This is what makes it
possible to apply double and t1 to other expressions, like y and 2 * x. It corresponds

CHAPTER 8. BUILDING THEORIES AND PROOFS 123

to the ordinary mathematical locution “in this section, let x and y range over the natural
numbers.” Whenever x and y occur, we assume they denote natural numbers.

Sometimes, however, we wish to fix a single value in a section. For example, in an
ordinary mathematical text, we might say “in this section, we fix a type, A, and a binary
relation on A.” The notion of a parameter captures this usage:

import standard

section
parameters {A : Type} (R : A → A → Type)
hypothesis transR : ∀ {x y z}, R x y → R y z → R x z

variables {a b c d e : A}

theorem t1 (H1 : R a b) (H2 : R b c) (H3 : R c d) : R a d :=
transR (transR H1 H2) H3

theorem t2 (H1 : R a b) (H2 : R b c) (H3 : R c d) (H4 : R d e) :
R a e :=

transR H1 (t1 H2 H3 H4)

check t1
check t2

end

check t1
check t2

Here, hypothesis functions as a synonym for parameter, so that A, R, and transR are all
parameters in the section. This means that, as before, they are inserted as arguments to
definitions and theorems as needed. But there is a difference: within the section, t1 is
an abbreviation for @t1 A R transR, which is to say, these arguments are fixed until the
section is closed. This means that you do not have to specify the explicit arguments R and
transR when you write t1 H2 H3 H4, in contrast to the previous example. But it also
means that you cannot specify other arguments in their place. In this example, making
R a parameter is appropriate if R is the only binary relation you want to reason about in
the section. If you want to apply your theorems to arbitrary binary relations within the
section, make R a variable.

Notice that Lean is consistent when it comes to providing alternative syntax for Prop-
valued variants of declarations:

Type Prop
constant axiom
variable premise
parameter hypothesis
take assume

Lean also allows you to use conjecture in place of hypothesis.

CHAPTER 8. BUILDING THEORIES AND PROOFS 124

The possibility of declaring parameters in a section also makes it possible to define
“local notation” that depends on those parameters. In the example below, as long as the
parameter m is fixed, we can write a ≡ b for equivalence modulo m. As soon as the section
is closed, however, the dependence on m becomes explicit, and the notation a ≡ b is no
longer valid.

import data.int
open int eq.ops algebra

section mod_m
parameter (m : Z)
variables (a b c : Z)

definition mod_equiv := (m | b - a)

local infix ≡ := mod_equiv

theorem mod_refl : a ≡ a :=
show m | a - a, from (sub_self a) ¹ ▶ !dvd_zero

theorem mod_symm (H : a ≡ b) : b ≡ a :=
have H1 : m | -(b - a), from iff.mpr !dvd_neg_iff_dvd H,
have H2 : m | a - b, from neg_sub b a ▶ H1,
H2

theorem mod_trans (H1 : a ≡ b) (H2 : b ≡ c) : a ≡ c :=
have H1 : m | (c - b) + (b - a), from !dvd_add H2 H1,
have H2 : m | c - a, from eq.subst
(calc
(c - b) + (b - a) = c - b + b - a : add.assoc

... = c + -b + b - a : rfl

... = c - a : neg_add_cancel_right)
H1,

H2
end mod_m

check mod_refl
-- ∀ (m a : Z), mod_equiv m a a

check mod_symm
-- ∀ (m a b : Z), mod_equiv m a b → mod_equiv m b a

check mod_trans
-- ∀ (m a b c : Z), mod_equiv m a b → mod_equiv m b c → mod_equiv m a c

More on Namespaces
Recall from Section Namespaces that namespaces not only package shorter names for the-
orems and identifiers, but also things like notation, coercions, classes, rewrite rules, and so
on. You can ask Lean to display a list of these “metaclasses”:

CHAPTER 8. BUILDING THEORIES AND PROOFS 125

print metaclasses

These can be opened independently using modifiers to the open command:

import data.nat

open [declaration] nat
open [notation] nat
open [coercion] nat
open [class] nat
open [abbreviation] nat

For example, open [coercion] nat makes the coercions in the namespace nat available
(and nothing else). You can multiple metaclasses on one line:

import data.nat

open [declaration] [notation] [coercion] nat

You can also open a namespace while excluding certain metaclasses. For example,

import data.nat

open - [notation] [coercion] nat

imports all metaclasses but [notation] and [coercion]. You can limit the scope of
an open command by putting it in a section. For example, here we temporarily import
notation from nat:

import data.nat

section
open [notation] nat

/- ... -/
end

You can also import only certain theorems by providing an explicit list in parentheses:

import data.nat

open nat (add sub_sub zero_div)

check add
check sub_sub
check zero_div

CHAPTER 8. BUILDING THEORIES AND PROOFS 126

The open command above imports all metaobjects from nat, but limits the shortened
identifiers to the ones listed. If you want to import only the shortened identifiers, use the
following:

import data.nat
open [declaration] nat (add sub_sub zero_div)

When you open a section, you can rename identifiers on the fly:

import data.nat
open nat (renaming add -> plus)

check plus

Or you can exclude a list of items from being imported:

import data.nat
open nat (hiding add)

Within a namespace, you can declare certain identifiers to be protected. This means
that when the namespace is opened, the short version of these names are not made available:

namespace foo
protected definition bar (A : Type) (x : A) := x

end foo

open foo
check foo.bar -- "check bar" yields an error

In the Lean library, common names are protected to avoid clashes. For example, we want
to write nat.rec_on, int.rec_on, and list.rec_on, even when all of these namespaces
are open, to avoid ambiguity and overloading. You can always define a local abbreviation
to use the shorter name:

import data.list
open list
local abbreviation induction_on := @list.induction_on
check induction_on

Alternatively, you can “unprotect” the definition by renaming it when you open the names-
pace:

import data.list
open list (renaming induction_on → induction_on)
check induction_on

CHAPTER 8. BUILDING THEORIES AND PROOFS 127

As yet a third alternative, you obtain an alias for the shorter name by opening the names-
pace for that identifier only:

import data.list
open list (induction_on)
check induction_on

You may find that at times you want to cobble together a namespace, with notation,
rewrite rules, or whatever, from existing namespaces. Lean provides an export command
for that. The export command supports the same options and modifiers as the open
command: when you export to a namespace, aliases for all the items you export become
part of the new namespace. For example, below we define a new namespace, my_namespace,
which includes items from bool, nat, and list.

import standard

namespace my_namespace
export bool (hiding measurable)
export nat
export list

end my_namespace

check my_namespace.band
check my_namespace.zero
check my_namespace.append

open my_namespace

check band
check zero
check append

This makes it possible for you to define nicely prepackaged configurations for those who
will use your theories later on.

Sometimes it is useful to hide auxiliary definitions and theorems from the outside world,
for example, so that they do not clutter up the namespace. The private keyword allows
you to do this. The name of a private definition is only visible in the module/file where
it was declared.

import data.nat
open nat

private definition inc (x : nat) := x + 1
private theorem inc_eq_succ (x : nat) : succ x = inc x :=

rfl

In this example, the definition inc and theorem inc_eq_succ are not visible or accessible
in modules that import this one.

9

Type Classes

We have seen that Lean’s elaborator provides helpful automation, filling in information
that is tedious to enter by hand. In this section we will explore a simple but powerful
technical device known as type class inference, which provides yet another mechanism for
the elaborator to supply missing information.

The notion of a type class originated with the Haskell programming language. Many of
the original uses carry over, but, as we will see, the realm of interactive theorem proving
raises even more possibilities for their use.

Type Classes and Instances
The basic idea is simple. In Section More on Coercions, we saw that any family types can
serve as the source or target of a coercion. In much the same way, any family of types can
be marked as a type class. Then we can declare particular elements of a type class to be
instances. These provide hints to the elaborator: any time the elaborator is looking for
an element of a type class, it can consult a table of declared instances to find a suitable
element.

More precisely, there are three steps involved:

• First, we declare a family of inductive types to be a type class.

• Second, we declare instances of the type class.

• Finally, we mark some implicit arguments with square brackets instead of curly brack-
ets, to inform the elaborator that these arguments should be inferred by the type class
mechanism.

128

CHAPTER 9. TYPE CLASSES 129

Here is a somewhat frivolous example:

import data.nat
open nat

attribute nat [class]

definition nat_one [instance] : N := 1

definition foo [x : N] : nat := x

check @foo
eval foo

example : foo = 1 := rfl

Here we declare nat to be a class with a “canonical” instance 1. Then we declare foo to
be, essentially, the identity function on the natural numbers, but we mark the argument
implicit, and indicate that it should be inferred by type class inference. When we write
foo, the preprocessor interprets it as foo ?x, where ?x is an implicit argument. But when
the elaborator gets hold of the expression, it sees that ?x : N is supposed to be solved by
type class inference. It looks for a suitable element of the class, and it finds the instance
one. Thus, when we evaluate foo, we simply get 1.

It is tempting to think of foo as defined to be equal to 1, but that is misleading. Every
time we write foo, the elaborator searches for a value. If we declare other instances of the
class, that can change the value that is assigned to the implicit argument. This can result
in seemingly paradoxical behavior. For example, we might continue the development above
as follows:

definition nat_two [instance] : N := 2

eval foo

example : foo ̸= 1 := dec_trivial

Now the “same” expression foo evaluates to 2. Whereas before we could prove foo = 1,
now we can prove foo ̸= 1, because the inferred implicit argument has changed. When
searching for a suitable instance of a type class, the elaborator tries the most recent instance
declaration first, by default. We will see below, however, that it is possible to give individual
instances higher or lower priority. The proof dec_trivial will be explained below.

As with coercion and other attributes, you can assign the class or instance at-
tributes in a definition, or after the fact, with an attribute command. As usual, the
assignments attribute foo [class] and attribute foo [instance] are only in effect
in the current namespace, but the assignments persist on import. To limit the scope of an
assignment to the current file, use the local attribute variant.

CHAPTER 9. TYPE CLASSES 130

The reason the example is frivolous is that there is rarely a need to “infer” a natural
number; we can just hard-code the choice of 1 or 2 into the definition of foo. Type classes
become useful when they depend on parameters, in which case, the value that is inferred
depends on these parameters.

Let us work through a simple example. Many theorems hold under the additional
assumption that a type is inhabited, which is to say, it has at least one element. For
example, if A is a type, ∃ x : A, x = x is true only if A is inhabited. Similarly, it often
happens that we would like a definition to return a default element in a “corner case.” For
example, we would like the expression head l to be of type A when l is of type list A; but
then we are faced with the problem that head l needs to return an “arbitrary” element of
A in the case where l is the empty list, nil.

For purposes like this, the standard library defines a type class inhabited : Type
→ Type, to enable type class inference to infer a “default” or “arbitrary” element of an
inhabited type. We will carry out a similar development in the examples that follow, using
a namespace hide to avoid conflicting with the definitions in the standard library.

Let us start with the first step of the program above, declaring an appropriate class:

inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A

An element of the class inhabited A is simply an expression of the form inhabited.mk a,
for some element a : A. The eliminator for the inductive type will allow us to “extract”
such an element of A from an element of inhabited A.

The second step of the program is to populate the class with some instances:

definition Prop.is_inhabited [instance] : inhabited Prop :=
inhabited.mk true

definition bool.is_inhabited [instance] : inhabited bool :=
inhabited.mk bool.tt

definition nat.is_inhabited [instance] : inhabited nat :=
inhabited.mk nat.zero

definition unit.is_inhabited [instance] : inhabited unit :=
inhabited.mk unit.star

This arranges things so that when type class inference is asked to infer an element ?M :
Prop, it can find the element true to assign to ?M, and similarly for the elements tt, zero,
and star of the types bool, nat, and unit, respectively.

The final step of the program is to define a function that infers an element H :
inhabited A and puts it to good use. The following function simply extracts the cor-
responding element a : A:

CHAPTER 9. TYPE CLASSES 131

definition default (A : Type) [H : inhabited A] : A :=
inhabited.rec (λ a, a) H

This has the effect that given a type expression A, whenever we write default A, we
are really writing default A ?H, leaving the elaborator to find a suitable value for the
metavariable ?H. When the elaborator succeeds in finding such a value, it has effectively
produced an element of type A, as though by magic.

check default Prop -- Prop
check default nat -- N
check default bool -- bool
check default unit -- unit

In general, whenever we write default A, we are asking the elaborator to synthesize an
element of type A.

Notice that we can “see” the value that is synthesized with eval:

eval default Prop -- true
eval default nat -- nat.zero
eval default bool -- bool.tt
eval default unit -- unit.star

We can also codify these choices as theorems:

example : default Prop = true := rfl
example : default nat = nat.zero := rfl
example : default bool = bool.tt := rfl
example : default unit = unit.star := rfl

Sometimes we want to think of the default element of a type as being an arbitrary
element, whose specific value should not play a role in our proofs. For that purpose, we
can write arbitrary A instead of default A. The definition of arbitrary is the same as
that of default, but is marked irreducible to discourage the elaborator from unfolding
it. This does not preclude proofs from making use of the value, however, so the use of
arbitrary rather than default functions primarily to signal intent.

Chaining Instances
If that were the extent of type class inference, it would not be all the impressive; it would
be simply a mechanism of storing a list of instances for the elaborator to find in a lookup
table. What makes type class inference powerful is that one can chain instances. That is,
an instance declaration can in turn depend on an implicit instance of a type class. This

CHAPTER 9. TYPE CLASSES 132

causes class inference to chain through instances recursively, backtracking when necessary,
in a Prolog-like search.

For example, the following definition shows that if two types A and B are inhabited,
then so is their product:

definition prod.is_inhabited [instance] {A B : Type} [H1 : inhabited A]
[H2 : inhabited B] : inhabited (prod A B) :=

inhabited.mk ((default A, default B))

With this added to the earlier instance declarations, type class instance can infer, for
example, a default element of nat × bool × unit:

open prod

check default (nat × bool × unit)
eval default (nat × bool × unit)

Given the expression default (nat × bool × unit), the elaborator is called on to
infer an implicit argument ?M : inhabited (nat × bool × unit). The instance
inhabited_product reduces this to inferring ?M1 : inhabited nat and ?M2 : inhabited
(bool × unit). The first one is solved by the instance nat.is_inhabited. The second
invokes another application of inhabited_product, and so on, until the system has inferred
the value (nat.zero, bool.tt, unit.star).

Similarly, we can inhabit function spaces with suitable constant functions:

definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] :
inhabited (A → B) :=

inhabited.rec_on H (λ b, inhabited.mk (λ a, b))

check default (nat → nat × bool × unit)
eval default (nat → nat × bool × unit)

In this case, type class inference finds the default element λ (a : nat), (nat.zero,
bool.tt, unit.star).

As an exercise, try defining default instances for other types, such as sum types and
the list type.

Decidable Propositions
Let us consider another example of a type class defined in the standard library, namely
the type class of decidable propositions. Roughly speaking, an element of Prop is said
to be decidable if we can decide whether it is true or false. The distinction is only useful
in constructive mathematics; classically, every proposition is decidable. Nonetheless, as

CHAPTER 9. TYPE CLASSES 133

we will see, the implementation of the type class allows for a smooth transition between
constructive and classical logic.

In the standard library, decidable is defined formally as follows:

inductive decidable [class] (p : Prop) : Type :=
| inl : p → decidable p
| inr : ¬p → decidable p

Logically speaking, having an element t : decidable p is stronger than having an element
t : p ∨ ¬p; it enables us to define values of an arbitrary type depending on the truth
value of p. For example, for the expression if p then a else b to make sense, we need
to know that p is decidable. That expression is syntactic sugar for ite p a b, where ite
is defined as follows:

definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)

The standard library also contains a variant of ite called dite, the dependent if-then-
else expression. It is defined as follows:

definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
decidable.rec_on H (λ Hc : c, t Hc) (λ Hnc : ¬ c, e Hnc)

That is, in dite c t e, we can assume Hc : c in the “then” branch, and Hnc : ¬ c in
the “else” branch. To make dite more convenient to use, Lean allows us to write if h :
c then t else e instead of dite c (λ h : c, t) (λ h : ¬ c, e).

In the standard library, we cannot prove that every proposition is decidable. But we
can prove that certain propositions are decidable. For example, we can prove that basic
operations like equality and comparisons on the natural numbers and the integers are
decidable. Moreover, decidability is preserved under propositional connectives:

check @decidable_and
-- Π {p q : Prop} [Hp : decidable p] [Hq : decidable q], decidable (p ∧ q)

check @decidable_or
check @decidable_not
check @decidable_implies

Thus we can carry out definitions by cases on decidable predicates on the natural numbers:

import standard

open nat

definition step (a b x : N) : N :=

CHAPTER 9. TYPE CLASSES 134

if x < a ∨ x > b then 0 else 1

set_option pp.implicit true
print definition step

Turning on implicit arguments shows that the elaborator has inferred the decidability of
the proposition x < a ∨ x > b, simply by applying appropriate instances.

With the classical axioms, we can prove that every proposition is decidable. When
you import the classical axioms, then, decidable p has an instance for every p, and the
elaborator infers that value quickly. Thus all theorems in the standard library that rely on
decidability assumptions are freely available in the classical library.

This explains the “proof” dec_trivial in Section Type Classes and Instances above.
The expression dec_trivial is actually defined in the module init.logic to be nota-
tion for the expression of_is_true trivial, where of_is_true infers the decidability of
the theorem you are trying to prove, extracts the corresponding decision procedure, and
confirms that it evaluates to true.

Overloading with Type Classes
We now consider the application of type classes that motivates their use in functional
programming languages like Haskell, namely, to overload notation in a principled way. In
Lean, a symbol like + can be given entirely unrelated meanings, a phenomenon that is
sometimes called “ad-hoc” overloading. Typically, however, we use the + symbol to denote
a binary function from a type to itself, that is, a function of type A → A → A for some
type A. We can use type classes to infer an appropriate addition function for suitable types
A. We will see in the next section that this is especially useful for developing algebraic
hierarchies of structures in a formal setting.

We can declare a type class has_add A as follows:

import standard

namespace hide

inductive has_add [class] (A : Type) : Type :=
mk : (A → A → A) → has_add A

definition add {A : Type} [s : has_add A] :=
has_add.rec (λ x, x) s

notation a `+` b := add a b

end hide

The class has_add A is supposed to be inhabited exactly when there is an appropriate
addition function for A. The add function is designed to find an instance of has_add A for

CHAPTER 9. TYPE CLASSES 135

the given type, A, and apply the corresponding binary addition function. The notation a +
b thus refers to the addition that is appropriate to the type of a and b. We can the declare
instances for nat, int, and bool:

definition has_add_nat [instance] : has_add nat :=
has_add.mk nat.add

definition has_add_int [instance] : has_add int :=
has_add.mk int.add

definition has_add_bool [instance] : has_add bool :=
has_add.mk bool.bor

open [coercion] nat int
open bool

set_option pp.notation false
check (2 : nat) + 2 -- nat
check (2 : int) + 2 -- int
check tt + ff -- bool

In the example above, we expose the coercions in namespaces nat and int, so that we
can use numerals. If we opened these namespace outright, the symbol + would be ad-
hoc overloaded. This would result in an ambiguity as to which addition we have in mind
when we write a + b for a b : nat. The ambiguity is benign, however, since the new
interpretation of + for nat is definitionally equal to the usual one. Setting the option to
turn off notation while pretty-printing shows us that it is the new add function that is
inferred in each case. Thus we are relying on type class overloading to disambiguate the
meaning of the expression, rather than ad-hoc overloading.

As with inhabited and decidable, the power of type class inference stems not only
from the fact that the class enables the elaborator to look up appropriate instances, but
also from the fact that it can chain instances to infer complex addition operations. For
example, assuming that there are appropriate addition functions for types A and B, we can
define addition on A × B pointwise:

definition has_add_prod [instance] {A B : Type} [sA : has_add A] [sB : has_add B] :
has_add (A × B) :=

has_add.mk (take p q, (add (prod.pr1 p) (prod.pr1 q), add (prod.pr2 p) (prod.pr2 q)))

open nat

check (1, 2) + (3, 4) -- N × N
eval (1, 2) + (3, 4) -- (4, 6)

We can similarly define pointwise addition of functions:

definition has_add_fun [instance] {A B : Type} [sB : has_add B] :
has_add (A → B) :=

CHAPTER 9. TYPE CLASSES 136

has_add.mk (λ f g, λ x, f x + g x)

open nat

check (λ x : nat, (1 : nat)) + (λ x, (2 : nat)) -- N → N
eval (λ x : nat, (1 : nat)) + (λ x, (2 : nat)) -- λ (x : N), 3

As an exercise, try defining instances of has_add for lists and vectors, and show that they
have the work as expected.

Managing Type Class Inference
Recall from Section Displaying Information that you can ask Lean for information about
the classes and instances that are currently in scope:

print classes
print instances inhabited

At times, you may find that the type class inference fails to find an expected instance, or,
worse, falls into an infinite loop and times out. To help debug in these situations, Lean
enables you to request a trace of the search:

set_option trace.class_instances true

If you add this to your file in Emacs mode and use C-c C-x to run an independent Lean
process on your file, the output buffer will show a trace every time the type class resolution
procedure is subsequently triggered.

You can also limit the search depth (the default is 32):

set_option class.instance_max_depth 5

Remember also that in the Emacs Lean mode, tab completion works in set_option, to
help you find suitable options.

As noted above, the type class instances in a given context represent a Prolog-like
program, which gives rise to a backtracking search. Both the efficiency of the program and
the solutions that are found can depend on the order in which the system tries the instance.
Instances which are declared last are tried first. Moreover, if instances are declared in other
modules, the order in which they are tried depends on the order in which namespaces are
opened. Instances declared in namespaces which are opened later are tried earlier.

You can change the order that type classes instances are tried by assigning them a pri-
ority. When an instance is declared, it is assigned a priority value std.priority.default,
defined to be 1000 in module init.priority in both the standard and hott libraries. You

CHAPTER 9. TYPE CLASSES 137

can assign other priorities when defining an instance, and you can later change the priority
with the attribute command. The following example illustrates how this is done:

open nat

inductive foo [class] :=
mk : nat → nat → foo

definition foo.a [p : foo] : nat := foo.rec_on p (λ a b, a)

definition i1 [instance] [priority std.priority.default+10] : foo :=
foo.mk 1 1

definition i2 [instance] : foo :=
foo.mk 2 2

example : foo.a = 1 := rfl

definition i3 [instance] [priority std.priority.default+20] : foo :=
foo.mk 3 3

example : foo.a = 3 := rfl

attribute i3 [instance] [priority 500]

example : foo.a = 1 := rfl

attribute i1 [instance] [priority std.priority.default-10]

example : foo.a = 2 := rfl

Instances in Sections
We can easily introduces instances of type classes in a section or context using variables and
parameters. Recall that variables are only included in declarations when they are explicitly
mentioned. Instances of type classes are rarely explicitly mentioned in definitions, so to
make sure that an instance of a type class is included in every definition and theorem, we
use the include command.

section
variables {A : Type} [H : has_add A] (a b : A)
include H

definition foo : a + b = a + b := rfl
check @foo

end

Note that the include command includes a variable in every definition and theorem in
that section. If we want to declare a definition or theorem which does not use the instance,
we can use the omit command:

CHAPTER 9. TYPE CLASSES 138

section
variables {A : Type} [H : has_add A] (a b : A)
include H
definition foo1 : a + b = a + b := rfl
omit H
definition foo2 : a = a := rfl -- H is not an argument of foo2
include H
definition foo3 : a + a = a + a := rfl

check @foo1
check @foo2
check @foo3

end

Bounded Quantification
A “bounded universal quantifier” is one that is of the form ∀ x : nat, x < n → P x. As
a final illustration of the power of type class inference, we show that a proposition of this
form is decidable assuming P is, and that type class inference can make use of that fact.

First, we define ball n P as shorthand for ∀ x : nat, x < n → P x.

-- ∀ x : nat, x < 0 → P x
definition ball_zero (P : nat → Prop) : ball zero P :=
λ x Hlt, absurd Hlt !not_lt_zero

variables {n : nat} {P : nat → Prop}

-- (∀ x : nat, x < succ n → P x) implies (∀ x : nat, x < n → P x)
definition ball_of_ball_succ (H : ball (succ n) P) : ball n P :=
λ x Hlt, H x (lt.step Hlt)

-- (∀ x : nat, x < n → P x) and (P n) implies (∀ x : nat, x < succ n → P x)
definition ball_succ_of_ball (H1 : ball n P) (H2 : P n) : ball (succ n) P :=
λ (x : nat) (Hlt : x < succ n), or.elim (eq_or_lt_of_le (le_of_lt_succ Hlt))

(λ he : x = n, eq.rec_on (eq.rec_on he rfl) H2)
(λ hlt : x < n, H1 x hlt)

-- (¬ P n) implies ¬ (∀ x : nat, x < succ n → P x)
definition not_ball_of_not (H1 : ¬ P n) : ¬ ball (succ n) P :=
λ (H : ball (succ n) P), absurd (H n (lt.base n)) H1

-- ¬ (∀ x : nat, x < n → P x) implies ¬ (∀ x : nat, x < succ n → P x)
definition not_ball_succ_of_not_ball (H1 : ¬ ball n P) : ¬ ball (succ n) P :=
λ (H : ball (succ n) P), absurd (ball_of_ball_succ H) H1

Finally, assuming P is a decidable predicate, we prove ∀ x : nat, x < n → P x by
induction on n.

definition dec_ball [instance] (H : decidable_pred P) : Π (n : nat), decidable (ball n P)
| dec_ball 0 := inl (ball_zero P)

CHAPTER 9. TYPE CLASSES 139

| dec_ball (a+1) :=
match dec_ball a with
| inl iH :=

match H a with
| inl Pa := inl (ball_succ_of_ball iH Pa)
| inr nPa := inr (not_ball_of_not nPa)
end

| inr niH := inr (not_ball_succ_of_not_ball niH)
end

Now we can use dec_trivial to prove simple theorems by “evaluation.”

example : ∀ x : nat, x ≤ 4 → x ̸= 6 :=
dec_trivial

example : ¬ ∀ x : nat, x ≤ 5 → ∀ y, y < x → y * y ̸= x :=
dec_trivial

We can also use the bounded quantifier to define a computable function. In this example,
the expression is_constant_range f n returns tt if and only if the function f has the
same value for every i such that 0 ≤ i < n.

open bool
definition is_constant_range (f : nat → nat) (n : nat) : bool :=
if ∀ i, i < n → f i = f 0 then tt else ff

example : is_constant_range (λ i, zero) 10 = tt :=
rfl

As an exercise, we encourage you to show that ∃ x : nat, x < n ∧ P x is also
decidable.

import data.nat
open nat decidable algebra

definition bex (n : nat) (P : nat → Prop) : Prop :=
∃ x : nat, x < n ∧ P x

definition not_bex_zero (P : nat → Prop) : ¬ bex 0 P :=
sorry

variables {n : nat} {P : nat → Prop}

definition bex_succ (H : bex n P) : bex (succ n) P :=
sorry

definition bex_succ_of_pred (H : P n) : bex (succ n) P :=
sorry

definition not_bex_succ (H1 : ¬ bex n P) (H2 : ¬ P n) : ¬ bex (succ n) P :=
sorry

CHAPTER 9. TYPE CLASSES 140

definition dec_bex [instance] (H : decidable_pred P) : Π (n : nat), decidable (bex n P) :=
sorry

10

Structures and Records

We have seen that Lean’s foundational system includes inductive types. We have, moreover,
noted that it is a remarkable fact that it is possible to construct a substantial edifice of
mathematics based on nothing more than the type universes, Pi types, and inductive types;
everything else follows from those. The Lean standard library contains many instances of
inductive types (e.g., nat, prod, list), and even the logical connectives are defined using
inductive types.

Remember that a non-recursive inductive type that contains only one constructor is
called a structure or record. The product type is a structure, as is the dependent product
type, that is, the Sigma type. In general, whenever we define a structure S, we usually
define projection functions that allow us to “destruct” each instance of S and retrieve the
values that are stored in its fields. The functions prod.pr1 and prod.pr2, which return
the first and second elements of a pair, are examples of such projections.

When writing programs or formalizing mathematics, it is not uncommon to define
structures containing many fields. The structure command, available in Lean, provides
infrastructure to support this process. When we define a structure using this command,
Lean automatically generates all the projection functions. The structure command also
allows us to define new structures based on previously defined ones. Moreover, Lean
provides convenient notation for defining instances of a given structure. �

Declaring Structures
The structure command is essentially a “front end” for defining inductive data types. Every
structure declaration introduces a namespace with the same name. The general form is
as follows:

141

CHAPTER 10. STRUCTURES AND RECORDS 142

structure <name> <parameters> <parent-structures> : Type :=
<constructor> :: <fields>

Most parts are optional. Here is an example:

structure point (A : Type) :=
mk :: (x : A) (y : A)

Values of type point are created using point.mk a b, and the fields of a point p are
accessed using point.x p and point.y p. The structure command also generates useful
recursors and theorems. Here are some of the constructions generated for the declaration
above.

check point -- a Type
check point.rec_on -- the recursor
check point.induction_on -- then recursor to Prop
check point.destruct -- an alias for point.rec_on
check point.x -- a projection / field accessor
check point.y -- a projection / field accessor

You can obtain the complete list of generated constructions using the command print
prefix.

print prefix point

Here are some simple theorems and expressions that use the generated constructions.
As usual, you can avoid the prefix point by using the command open point.

eval point.x (point.mk (10 : N) 20)
eval point.y (point.mk (10 : N) 20)

open point

example (A : Type) (a b : A) : x (mk a b) = a :=
rfl

example (A : Type) (a b : A) : y (mk a b) = b :=
rfl

If the constructor is not provided, then a constructor is named mk by default.

structure prod (A : Type) (B : Type) :=
(pr1 : A) (pr2 : B)

check prod.mk

CHAPTER 10. STRUCTURES AND RECORDS 143

The keyword record is an alias for structure.

record point (A : Type) :=
mk :: (x : A) (y : A)

You can provide universe levels explicitly. The annotations in the next example force
the parameters A and B to be types from the same universe, and set the return type to also
be in the same universe.

structure prod.{u} (A : Type.{u}) (B : Type.{u}) : Type.{max 1 u} :=
(pr1 : A) (pr2 : B)

set_option pp.universes true
check prod.mk

The set_option command above instructs Lean to display the universe levels.
We use max 1 l as the resultant universe level to ensure the universe level is never 0

even when the parameter A and B are propositions. Recall that in Lean, Type.{0} is Prop,
which is impredicative and proof irrelevant.

Objects
We have been using constructors to create elements of a structure (or record) type. For
structures containing many fields, this is often inconvenient, because we have to remember
the order in which the fields were defined. Lean therefore provides the following alternative
notations for defining elements of a structure type.

{| <structure-type> (, <field-name> := <expr>)* |}
or
{| <structure-type> (, <field-name> := <expr>)* |}

For example, we use this notation to define “points.” The order that the fields are specified
does not matter, so all the expressions below define the same point.

structure point (A : Type) :=
mk :: (x : A) (y : A)

check {| point, x := (10 : N), y := 20 |} -- point N
check {| point, y := (20 : N), x := 10 |}
check {| point, x := (10 : N), y := 20 |}

example : {| point, x := (10 : N), y := 20 |} = {| point, y := 20, x := 10 |} :=
rfl

CHAPTER 10. STRUCTURES AND RECORDS 144

Note that point is a parametric type, but we did not provide its parameters. Here, in
each case, Lean infers that we are constructing an object of type point N from the fact
that one of the components is specified to be of type N. Of course, the parameters can be
explicitly provided with the type if needed.

check {| point N, x := 10, y := 20 |}

If the value of a field is not specified, Lean tries to infer it. If the unspecified fields
cannot be inferred, Lean signs an error indicating the corresponding placeholder could not
be synthesized.

structure my_struct :=
mk :: (A : Type) (B : Type) (a : A) (b : B)

check {| my_struct, a := 10, b := true |}

The notation for defining record objects can also be used in pattern-matching expres-
sions.

open nat

structure big :=
(field1 : nat) (field2 : nat)
(field3 : nat) (field4 : nat)
(field5 : nat) (field6 : nat)

definition b : big := big.mk 1 2 3 4 5 6

definition v3 : nat :=
match b with
{| big, field3 := v |} := v

end

example : v3 = 3 := rfl

Record update is another common operation. It consists in creating a new record object
by modifying the value of one or more fields. Lean provides a variation of the notation
described above for record updates.

{| <structure-type> (, <field-name> := <expr>)* (, <record-obj>)* |}
or
{| <structure-type> (, <field-name> := <expr>)* (, <record-obj>)* |}

The semantics is simple: record objects <record-obj> provide the values for the unspecified
fields. If more than one record object is provided, then they are visited in order until Lean
finds one the contains the unspecified field. Lean raises an error if any of the field names
remain unspecified after all the objects are visited.

CHAPTER 10. STRUCTURES AND RECORDS 145

open nat

structure point (A : Type) :=
mk :: (x : A) (y : A)

definition p1 : point nat := {| point, x := 10, y := 20 |}
definition p2 : point nat := {| point, x := 1, p1 |}
definition p3 : point nat := {| point, y := 1, p1 |}

example : point.y p1 = point.y p2 :=
rfl

example : point.x p1 = point.x p3 :=
rfl

Inheritance
We can extend existing structures by adding new fields. This feature allow us to simulate
a form of inheritance.

structure point (A : Type) :=
mk :: (x : A) (y : A)

inductive color :=
red | green | blue

structure color_point (A : Type) extends point A :=
mk :: (c : color)

The type color_point inherits all the fields from point and declares a new one c :
color. Lean automatically generates a coercion from color_point to point, so that a
color_point can be provided wherever a point is expected.

definition x_plus_y (p : point num) :=
point.x p + point.y p

definition green_point : color_point num :=
{| color_point, x := 10, y := 20, c := color.green |}

eval x_plus_y green_point -- 30

-- display implicit coercions
set_option pp.coercions true

check x_plus_y green_point -- num

example : green_point = point.mk 10 20 :=
rfl

check color_point.to_point -- color_point ?A → point ?A

CHAPTER 10. STRUCTURES AND RECORDS 146

The coercions are named to_<parent structure>. Lean always defines functions that
map the child structure to its parents, but we can ask Lean not to mark these functions as
coercions by using the private keyword.

structure color_point (A : Type) extends private point A :=
mk :: (c : color)

variable f : point N → bool

check f (color_point.to_point (@color_point.mk N 1 2 color.red))

For private parent structures, we have to use the coercions explicitly. If we remove
color_point.to_point from the above check command, we get a type error.

We can “rename” fields inherited from parent structures using the renaming clause.

structure prod (A : Type) (B : Type) :=
pair :: (pr1 : A) (pr2 : B)

-- Rename fields pr1 and pr2 to x and y respectively.
structure point3 (A : Type) extends prod A A renaming pr1→x pr2→y :=
mk :: (z : A)

check point3.x
check point3.y
check point3.z

example : point3.mk (10 : N) 20 30 = prod.pair 10 20 :=
rfl

In the next example, we define a structure using multiple inheritance, and then define
an object using objects of the parent structures.

import data.nat
open nat

structure point (A : Type) :=
(x : A) (y : A) (z : A)

structure rgb_val :=
(red : nat) (green : nat) (blue : nat)

structure red_green_point (A : Type) extends point A, rgb_val :=
(no_blue : blue = 0)

definition p : point nat := {| point, x := 10, y := 10, z := 20 |}
definition r : rgb_val := {| rgb_val, red := 200, green := 50, blue := 0 |}
definition rgp : red_green_point nat := {| red_green_point, p, r, no_blue := rfl |}

example : point.x rgp = 10 := rfl
example : rgb_val.red rgp = 200 := rfl

CHAPTER 10. STRUCTURES AND RECORDS 147

Structures as Classes
Any structure can be tagged as a class. This makes it a suitable target for the class-instance
resolution procedures that were described in the previous chapter. Declaring a structure
as a class also has the effect that the structure argument in each projection is tagged as an
implicit argument to be inferred by type class resolution.

For example, in the definition of the has_mul structure below, the projection
has_mul.mul has an implicit argument [s : has_mul A]. This means that when we
write has_mul.mul a b with a b : A, type class resolution will search for a suitable
instance of has_mul A, a multiplication structure associated with A. As a result, we can
define the binary notation a * b, leaving the structure implicit.

namespace hide

structure has_mul [class] (A : Type) :=
mk :: (mul : A → A → A)

check @has_mul.mul -- Π {A : Type} [c : has_mul A], A → A → A

infixl `*` := has_mul.mul

section
variables (A : Type) (s : has_mul A) (a b : A)
check a * b

end

end hide

In the last check command, the structure s in the local context is used to synthesize the
implicit argument in a * b.

When a structure is marked as a class, the functions mapping a child structure to
its parents are also marked as instances unless the private modifier is used. As a result,
whenever an instance of the parent structure is required, and instance of the child structure
can be provided. In the following example, we use this mechanism to “reuse” the notation
defined for the parent structure, has_mul, with the child structure, semigroup.

namespace hide

structure has_mul [class] (A : Type) :=
mk :: (mul : A → A → A)

infixl `*` := has_mul.mul

structure semigroup [class] (A : Type) extends has_mul A :=
mk :: (assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

section
variables (A : Type) (s : semigroup A) (a b : A)

CHAPTER 10. STRUCTURES AND RECORDS 148

check a * b
end

end hide

Once again, the structure s in the local context is used to synthesize the implicit argument
in a * b. We can see what is going by asking Lean to display implicit arguments, coercions,
and disable notation.

section
variables (A : Type) (s : semigroup A) (a b : A)

set_option pp.implicit true
set_option pp.notation false

check a * b -- @has_mul.mul A (@semigroup.to_has_mul A s) a b : A
end

Here is a fragment of the algebraic hierarchy defined using this mechanism. In Lean,
you can also inherit from multiple structures. Moreover, fields with the same name are
merged. If the types do not match an error is generated. The “merge” can be avoided by
using the renaming clause.

namespace hide

structure has_mul [class] (A : Type) :=
mk :: (mul : A → A → A)

structure has_one [class] (A : Type) :=
mk :: (one : A)

structure has_inv [class] (A : Type) :=
mk :: (inv : A → A)

infixl `*` := has_mul.mul
postfix ` ¹` := has_inv.inv
notation 1 := has_one.one

structure semigroup [class] (A : Type) extends has_mul A :=
mk :: (assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

structure comm_semigroup [class] (A : Type) extends semigroup A :=
mk :: (comm : ∀ a b, mul a b = mul b a)

structure monoid [class] (A : Type) extends semigroup A, has_one A :=
mk :: (right_id : ∀ a, mul a one = a) (left_id : ∀ a, mul one a = a)

structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A

print prefix comm_monoid

end hide

CHAPTER 10. STRUCTURES AND RECORDS 149

Notice that we can suppress := and :: when we are not declaring any new fields, as is the
case for the structure comm_monoid. The print prefix command shows that the common
fields of monoid and comm_semigroup have been merged.

The renaming clause allow us to perform non-trivial merge operations such as combin-
ing an abelian group with a monoid to obtain a ring.

structure group [class] (A : Type) extends monoid A, has_inv A :=
(is_inv : ∀ a, mul a (inv a) = one)

structure abelian_group [class] (A : Type) extends group A renaming mul→add, comm_monoid A

structure ring [class] (A : Type)
extends abelian_group A renaming
assoc→add.assoc
comm→add.comm
one→zero
right_id→add.right_id
left_id→add.left_id
inv→uminus
is_inv→uminus_is_inv,

monoid A renaming
assoc→mul.assoc
right_id→mul.right_id
left_id→mul.left_id

:=
(dist_left : ∀ a b c, mul a (add b c) = add (mul a b) (mul a c))
(dist_right : ∀ a b c, mul (add a b) c = add (mul a c) (mul b c))

11

Tactic-Style Proofs

In this chapter, we describe an alternative approach to constructing proofs, using tactics.
A proof term is a representation of a mathematical proof; tactics are commands, or instruc-
tions, that describe how to build such a proof. Informally, we might begin a mathematical
proof by saying “to prove the forward direction, unfold the definition, apply the previous
lemma, and simplify.” Just as these are instructions that tell the reader how to find the
relevant proof, tactics are instructions that tell Lean how to construct a proof term. They
naturally support an incremental style of writing proofs, in which users decompose a proof
and work on goals one step at a time.

We will describe proofs that consist of sequences of tactics as “tactic-style” proofs, to
contrast with the ways of writing proof terms we have seen so far, which we will call
“term-style” proofs. Each style has its own advantages and disadvantages. One important
difference is that term-style proofs are elaborated globally, and information gathered from
one part of a term can be used to fill in implicit information in another part of the term.
In contrast, tactics apply locally, and are narrowly focused on a single subgoal in the proof.

Entering the Tactic Mode
Conceptually, stating a theorem or introducing a have statement creates a goal, namely,
the goal of constructing a term with the expected type. For example, the following creates
the goal of constructing a term of type p ∧ q ∧ p, in a context with constants p q :
Prop, Hp : p and Hq : q:

theorem test (p q : Prop) (Hp : p) (Hq : q) : p ∧ q ∧ p :=
sorry

150

CHAPTER 11. TACTIC-STYLE PROOFS 151

We can write this goal as follows:

p : Prop, q : Prop, Hp : p, Hq : q ⊢ p ∧ q ∧ p

Indeed, if you replace the “sorry” by an underscore in the example above, Lean will report
that it is exactly this goal that has been left unsolved.

Ordinarily, we meet such a goal by writing an explicit term. But wherever a term is
expected, Lean allows us to insert instead a begin ... end block, followed by a sequence
of commands, separated by commas. We can prove the theorem above in that way:

theorem test (p q : Prop) (Hp : p) (Hq : q) : p ∧ q ∧ p :=
begin

apply and.intro,
exact Hp,
apply and.intro,
exact Hq,
exact Hp

end

The apply tactic applies an expression, viewed as denoting a function with zero or more
arguments. It unifies the conclusion with the expression in the current goal, and creates
new goals for the remaining arguments, provided that no later arguments depend on them.
In the example above, the command apply and.intro yields two subgoals:

p : Prop,
q : Prop,
Hp : p,
Hq : q
⊢ p

⊢ q ∧ p

For brevity, Lean only displays the context for the first goal, which is the one addressed
by the next tactic command. The first goal is met with the command exact Hp. The
exact command is just a variant of apply which signals that the expression given should
fill the goal exactly. It is good form to use it in a tactic proof, since its failure signals that
something has gone wrong; but otherwise apply would work just as well.

You can see the resulting proof term with print:

reveal test
print test

You can write a tactic script incrementally. If you run Lean on an incomplete tactic
proof bracketed by begin and end, the system reports all the unsolved goals that remain.
If you are running Lean with its Emacs interface, you can see this information by putting

CHAPTER 11. TACTIC-STYLE PROOFS 152

your cursor on the end symbol, which should be underlined. In the Emacs interface, there
is another extremely useful trick: if you put your cursor on a line of a tactic proof and
press “C-c C-g”, Lean will show you the goal that remains at the end of the line.

Tactic commands can take compound expressions, not just single identifiers. The fol-
lowing is a shorter version of the preceding proof:

theorem test (p q : Prop) (Hp : p) (Hq : q) : p ∧ q ∧ p :=
begin

apply (and.intro Hp),
exact (and.intro Hq Hp)

end

Unsurprisingly, it produces exactly the same proof term.

reveal test
print test

Tactic applications can also be concatenated with a semicolon. Formally speaking,
there is only one (compound) step in the following proof:

theorem test (p q : Prop) (Hp : p) (Hq : q) : p ∧ q ∧ p :=
begin

apply (and.intro Hp); exact (and.intro Hq Hp)
end

Whenever a proof term is expected, instead of using a begin...end block, you can
write the by keyword followed by a single tactic:

theorem test (p q : Prop) (Hp : p) (Hq : q) : p ∧ q ∧ p :=
by apply (and.intro Hp); exact (and.intro Hq Hp)

In the Lean Emacs mode, if you put your cursor on the “b” in “by” and press “C-c C-g”,
Lean shows you the goal that the tactic is supposed to meet.

Basic Tactics
In addition to apply and exact, another useful tactic is intro, which introduces a hypoth-
esis. What follows is an example of an identity from propositional logic that we proved
in Section Examples of Propositional Validities, but now prove using tactics. We adopt
the following convention regarding indentation: whenever a tactic introduces one or more
additional subgoals, we indent another two spaces, until the additional subgoals are deleted.

03_Propositions_and_Proofs.org#Examples_of_Propositional_Validities

CHAPTER 11. TACTIC-STYLE PROOFS 153

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
begin

apply iff.intro,
intro H,
apply (or.elim (and.elim_right H)),

intro Hq,
apply or.intro_left,
apply and.intro,

exact (and.elim_left H),
exact Hq,

intro Hr,
apply or.intro_right,
apply and.intro,
exact (and.elim_left H),
exact Hr,

intro H,
apply (or.elim H),

intro Hpq,
apply and.intro,

exact (and.elim_left Hpq),
apply or.intro_left,
exact (and.elim_right Hpq),

intro Hpr,
apply and.intro,

exact (and.elim_left Hpr),
apply or.intro_right,
exact (and.elim_right Hpr)

end

The intro command can more generally be used to introduce a variable of any type:

example (A : Type) : A → A :=
begin

intro a,
exact a

end

example (A : Type) : ∀ x : A, x = x :=
begin

intro x,
exact eq.refl x

end

It has a plural form, intros, which takes a list of names.

example : ∀ a b c : nat, a = b → a = c → c = b :=
begin

intros [a, b, c, H1, H2],
exact eq.trans (eq.symm H2) H1

end

CHAPTER 11. TACTIC-STYLE PROOFS 154

The intros command can also be used without any arguments, in which case, it chooses
names and introduces as many variables as it can. We will see an example of this in a
moment.

The assumption tactic looks through the assumptions in context of the current goal,
and if there is one matching the conclusion, it applies it.

example (H1 : x = y) (H2 : y = z) (H3 : z = w) : x = w :=
begin

apply (eq.trans H1),
apply (eq.trans H2),
assumption -- applied H3

end

It will unify metavariables in the conclusion if necessary:

example (H1 : x = y) (H2 : y = z) (H3 : z = w) : x = w :=
begin

apply eq.trans,
assumption, -- solves x = ?b with H1
apply eq.trans,
assumption, -- solves ?b = w with H2
assumption -- solves z = w with H3

end

The following example uses the intros command to introduce the three variables and two
hypotheses automatically:

example : ∀ a b c : nat, a = b → a = c → c = b :=
begin

intros,
apply eq.trans,
apply eq.symm,
assumption,
assumption

end

The repeat combinator can be used to simplify the last two lines:

example : ∀ a b c : nat, a = b → a = c → c = b :=
begin

intros,
apply eq.trans,
apply eq.symm,
repeat assumption

end

There is variant of apply called fapply that is more aggressive in creating new subgoals
for arguments. Here is an example of how it is used:

CHAPTER 11. TACTIC-STYLE PROOFS 155

import data.nat
open nat

example : ∃ a : N, a = a :=
begin

fapply exists.intro,
exact nat.zero,
apply rfl

end

The command fapply exists.intro creates two goals. The first is to provide a natural
number, a, and the second is to prove that a = a. Notice that the second goal depends on
the first; solving the first goal instantiates a metavariable in the second.

Notice also that we could not write exact 0 in the proof above, because 0 is a numeral
that is coerced to a natural number. In the context of a tactic proof, expressions are
elaborated “locally,” before being sent to the tactic command. When the tactic command
is being processed, Lean does not have enough information to determine that 0 needs to
be coerced. We can get around that by stating the type explicitly:

example : ∃ a : N, a = a :=
begin

fapply exists.intro,
exact (0 : N),
apply rfl

end

Another tactic that is sometimes useful is the generalize tactic, which is, in a sense,
an inverse to intro.

import data.nat
open nat

variables x y z : N

example : x = x :=
begin

generalize x, -- goal is x : N ⊢ ∀ (x : N), x = x
intro y, -- goal is x y : N ⊢ y = y
apply rfl

end

example (H : x = y) : y = x :=
begin

generalize H, -- goal is x y : N, H : x = y ⊢ y = x
intro H1, -- goal is x y : N, H H1 : x = y ⊢ y = x
apply (eq.symm H1)

end

In the first example above, the generalize tactic generalizes the conclusion over the
variable x, turning the goal into a ∀. In the second, it generalizes the goal over the

CHAPTER 11. TACTIC-STYLE PROOFS 156

hypothesis H, putting the antecedent explicitly into the goal. We generalize any term, not
just variables:

example : x + y + z = x + y + z :=
begin

generalize (x + y + z), -- goal is x y z : N ⊢ ∀ (x : N), x = x
intro w, -- goal is x y z w : N ⊢ w = w
apply rfl

end

Notice that once we generalize over x + y + z, the variables x y z : N in the context
become irrelevant. (The same is true of the hypothesis H in the previous example.) The
clear tactic throws away elements of the context, when it is safe to do so:

example : x + y + z = x + y + z :=
begin

generalize (x + y + z), -- goal is x y z : N ⊢ ∀ (x : N), x = x
clear x, clear y, clear z,
intro w, -- goal is w : N ⊢ w = w
apply rfl

end

The revert tactic is a combination of generalize and clear:

example : x = x :=
begin

revert x, -- goal is ⊢ ∀ (x : N), x = x
intro y, -- goal is y : N ⊢ y = y
apply rfl

end

example (H : x = y) : y = x :=
begin

revert H, -- goal is x y : N ⊢ x = y → y = x
intro H1, -- goal is x y : N, H1 : x = y ⊢ y = x
apply (eq.symm H1)

end

Like intro, the tactics generalize, clear, and revert have plural forms. For example,
we could have written above:

example : x + y + z = x + y + z :=
begin

generalize (x + y + z), -- goal is x y z : N ⊢ ∀ (x : N), x = x
clears x y z,
intro w, -- goal is w : N ⊢ w = w
apply rfl

end

CHAPTER 11. TACTIC-STYLE PROOFS 157

Structuring Tactic Proofs
One thing that is nice about Lean’s proof-writing syntax is that it is possible to mix term-
style and tactic-style proofs, and pass between the two freely. For example, the tactics
apply and exact expect arbitrary terms, which you can write using have, show, obtains,
and so on. Conversely, when writing an arbitrary Lean term, you can always invoke the
tactic mode by inserting a begin...end block. In the next example, we use show within a
tactic block to fulfill a goal by providing an explicit term.

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
begin

apply iff.intro,
intro H,
apply (or.elim (and.elim_right H)),

intro Hq,
show (p ∧ q) ∨ (p ∧ r),

from or.inl (and.intro (and.elim_left H) Hq),
intro Hr,
show (p ∧ q) ∨ (p ∧ r),

from or.inr (and.intro (and.elim_left H) Hr),
intro H,
apply (or.elim H),

intro Hpq,
show p ∧ (q ∨ r), from
and.intro

(and.elim_left Hpq)
(or.inl (and.elim_right Hpq)),

intro Hpr,
show p ∧ (q ∨ r), from
and.intro
(and.elim_left Hpr)
(or.inr (and.elim_right Hpr))

end

You can also nest begin...end blocks within other begin...end blocks. In a nested
block, Lean focuses on the first goal, and generates an error if it has not been fully solved
at the end of the block. This can be helpful in indicating the separate proofs of multiple
subgoals introduced by a tactic.

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
begin

apply iff.intro,
begin

intro H,
apply (or.elim (and.elim_right H)),

intro Hq,
show (p ∧ q) ∨ (p ∧ r),

from or.inl (and.intro (and.elim_left H) Hq),
intro Hr,
show (p ∧ q) ∨ (p ∧ r),

from or.inr (and.intro (and.elim_left H) Hr),
end,

CHAPTER 11. TACTIC-STYLE PROOFS 158

begin
intro H,
apply (or.elim H),
begin

intro Hpq,
show p ∧ (q ∨ r), from

and.intro
(and.elim_left Hpq)
(or.inl (and.elim_right Hpq)),

end,
begin

intro Hpr,
show p ∧ (q ∨ r), from

and.intro
(and.elim_left Hpr)
(or.inr (and.elim_right Hpr))

end
end

end

Notice that you still need to use a comma after a begin...end block when there are
remaining goals to be discharged. Within a begin...end block, you can abbreviate nested
occurrences of begin and end with curly braces:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=
begin

apply iff.intro,
{ intro H,

apply (or.elim (and.elim_right H)),
{ intro Hq,

apply or.intro_left,
apply and.intro,
{ exact (and.elim_left H) },
{ exact Hq }},

{ intro Hr,
apply or.intro_right,
apply and.intro,
{ exact (and.elim_left H)},
{ exact Hr }}},

{ intro H,
apply (or.elim H),
{ intro Hpq,

apply and.intro,
{ exact (and.elim_left Hpq) },
{ apply or.intro_left,

exact (and.elim_right Hpq) }},
{ intro Hpr,

apply and.intro,
{ exact (and.elim_left Hpr)},
{ apply or.intro_right,

exact (and.elim_right Hpr) }}}
end

Here we have adopted the convention that whenever a tactic increases the number of goals
to be solved, the tactics that solve each subsequent goal are enclosed in braces. This may

CHAPTER 11. TACTIC-STYLE PROOFS 159

not increase readability much, but it does help clarify the structure of the proof.
There is a have construct for tactic-style proofs that is similar to the one for term-style

proofs. In the proof below, the first have creates the subgoal Hp : p. The from clause
solves it, and after that Hp is available to subsequent tactics. The example illustrates that
you can also use another begin...end block, or a by clause, to prove a subgoal introduced
by have.

variables p q : Prop

example : p ∧ q ↔ q ∧ p :=
begin

apply iff.intro,
begin

intro H,
have Hp : p, from and.left H,
have Hq : q, from and.right H,
apply and.intro,
repeat assumption

end,
begin

intro H,
have Hp : p,

begin
apply and.right,
apply H

end,
have Hq : q, by apply and.left; exact H,
apply (and.intro Hp Hq)

end
end

Cases and Pattern Matching
The cases tactic works on elements of an inductively defined type. It does what the name
suggests: it decomposes an element of an inductive type according to each of the possible
constructors, and leaves a goal for each case. Note that the following example also uses
the revert tactic to move the hypothesis into the conclusion of the goal.

import data.nat
open nat

example (x : N) (H : x ̸= 0) : succ (pred x) = x :=
begin

revert H,
cases x,
-- first goal: ⊢ 0 ̸= 0 → succ (pred 0) = 0
{ intro H1,

apply (absurd rfl H1)},
-- second goal: ⊢ succ a ̸= 0 → succ (pred (succ a)) = succ a
{ intro H1,

CHAPTER 11. TACTIC-STYLE PROOFS 160

apply rfl}
end

The name of the cases tactic is particularly well suited to use with disjunctions:

example (a b : Prop) : a ∨ b → b ∨ a :=
begin

intro H,
cases H with [Ha, Hb],
{ exact or.inr Ha },
{ exact or.inl Hb }

end

In the next example, we rely on the decidability of equality for the natural numbers to
carry out another proof by cases:

import data.nat
open nat

check nat.sub_self

example (m n : nat) : m - n = 0 ∨ m ̸= n :=
begin

cases (decidable.em (m = n)) with [Heq, Hne],
{ apply eq.subst Heq,

exact or.inl (nat.sub_self m)},
{ apply or.inr Hne }

end

The cases tactic can also be used to extract the arguments of a constructor, even for an
inductive type like and, for which there is only one constructor.

example (p q : Prop) : p ∧ q → q ∧ p :=
begin

intro H,
cases H with [H1, H2],
apply and.intro,
exact H2,
exact H1

end

Here the with clause names the two arguments to the constructor. If you omit it, Lean
will choose a name for you. If there are multiple constructors with arguments, you can
provide cases with a list of all the names, arranged sequentially:

import data.nat
open nat

inductive foo : Type :=
| bar1 : N → N → foo

CHAPTER 11. TACTIC-STYLE PROOFS 161

| bar2 : N → N → N → foo

definition silly (x : foo) : N :=
begin

cases x with [a, b, c, d, e],
exact b, -- a, b, c are in the context
exact e -- d, e are in the context

end

You can also use pattern matching in a tactic block. With

example (p q r : Prop) : p ∧ q ↔ q ∧ p :=
begin

apply iff.intro,
{ intro H,

match H with
| and.intro H1 H2 := by apply and.intro; repeat assumption
end },

{ intro H,
match H with
| and.intro H1 H2 := by apply and.intro; repeat assumption
end },

end

With pattern matching, the first and third examples in this section could be written as
follows:

example (x : N) (H : x ̸= 0) : succ (pred x) = x :=
begin

revert H,
match x with
| 0 := by intro H1; exact (absurd rfl H1)
| succ y := by intro H1; apply rfl
end

end

definition silly (x : foo) : N :=
begin

match x with
| foo.bar1 a b := b
| foo.bar2 c d e := e
end

end

The Rewrite Tactic
The rewrite tactic provide a basic mechanism for applying substitutions to goals and
hypotheses, providing a convenient and efficient way of working with equality. This tactic
is loosely based on the rewrite tactic available in the proof language SSReflect.

CHAPTER 11. TACTIC-STYLE PROOFS 162

The rewrite tactic has many features. The most basic form of the tactic is rewrite
t, where t is a term which conclusion is an equality. In the following example, we use this
basic form to rewrite the goal using a hypothesis.

open nat
variables (f : nat → nat) (k : nat)

example (H1 : f 0 = 0) (H2 : k = 0) : f k = 0 :=
begin

rewrite H2, -- replace k with 0
rewrite H1 -- replace f 0 with 0

end

In the example above, the first rewrite tactic replaces k with 0 in the goal f k = 0. Then,
the second rewrite replace f 0 with 0. The rewrite tactic automatically closes any goal
of the form t = t.

Multiple rewrites can be combined using the notation rewrite [t_1, ..., t_n],
which is just shorthand for rewrite t_1, ..., rewrite t_n. The previous example can
be written as:

open nat
variables (f : nat → nat) (k : nat)

example (H1 : f 0 = 0) (H2 : k = 0) : f k = 0 :=
begin

rewrite [H2, H1]
end

By default, the rewrite tactic uses an equation in the forward direction, matching the
left-hand side with an expression, and replacing it with the right-hand side. The notation
-t can be used to instruct the tactic to use the equality t in the reverse direction.

open nat
variables (f : nat → nat) (a b : nat)

example (H1 : a = b) (H2 : f a = 0) : f b = 0 :=
begin

rewrite [-H1, H2]
end

In this example, the term -H1 instructs the rewriter to replace b with a.
The notation *t instructs the rewriter to apply the rewrite t zero or more times, while

the notation +t instructs the rewriter to use it at least once. Note that rewriting with *t
never fails.

import data.nat
open nat algebra

CHAPTER 11. TACTIC-STYLE PROOFS 163

example (x y : nat) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
by rewrite [*left_distrib, *right_distrib, -add.assoc]

To avoid non-termination, the rewriter tactic has a limit on the maximum number of
iterations performed by rewriting steps of the form *t and +t. For example, without this
limit, the tactic rewrite *add.comm would make Lean diverge on any goal that contains
a sub-term of the form t + s since commutativity would be always applicable. The limit
can be modified by setting the option rewriter.max_iter.

The notation rewrite n t, where n, is a positive number indicates that t must be
applied exactly n times. Similarly, rewrite n>t is notation for at most n times.

A pattern p can be optionally provided to a rewriting step t using the notation {p}t
. It allows us to specify where the rewrite should be applied. This feature is particularly
useful for rewrite rules such as commutativity a + b = b + a which may be applied to
many different sub-terms. A pattern may contain placeholders. In the following example,
the pattern b + _ instructs the rewrite tactic to apply commutativity to the first term
that matches b + _, where _ can be matched with an arbitrary term.

example (a b c : nat) : a + b + c = a + c + b :=
begin

rewrite [add.assoc, {b + _}add.comm, -add.assoc]
end

In the example above, the first step rewrites a + b + c to a + (b + c). Then, {b +
_}add.comm applies commutativity to the term b + c. Without the pattern {b + _}, the
tactic would instead rewrite a + (b + c) to (b + c) + a. Finally, -add.assoc applies
associativity in the “reverse direction” rewriting a + (c + b) to a + c + b.

By default, the tactic affects only the goal. The notation t at H applies the rewrite t
at hypothesis H.

variables (f : nat → nat) (a : nat)

example (H : a + 0 = 0) : f a = f 0 :=
begin

rewrite [add_zero at H, H]
end

The first step, add_zero at H, rewrites the hypothesis (H : a + 0 = 0) to a = 0. Then
the new hypothesis (H : a = 0) is used to rewrite the goal to f 0 = f 0.

Multiple hypotheses can be specified in the same at clause.

variables (a b : nat)

example (H1 : a + 0 = 0) (H2 : b + 0 = 0) : a + b = 0 :=
begin

CHAPTER 11. TACTIC-STYLE PROOFS 164

rewrite add_zero at (H1, H2),
rewrite [H1, H2]

end

You may also use t at * to indicate that all hypotheses and the goal should be rewritten
using t. The tactic step fails if none of them can be rewritten. The notation t at * ⊢
applies t to all hypotheses. You can enter the symbol ⊢ by typing \|-.

variables (a b : nat)

example (H1 : a + 0 = 0) (H2 : b + 0 = 0) : a + b + 0 = 0 :=
begin

rewrite add_zero at *,
rewrite [H1, H2]

end

The step add_zero at * rewrites the hypotheses H1, H2 and the main goal using the
add_zero (x : nat) : x + 0 = x, producing a = 0, b = 0 and a + b = 0 respectively.

The rewrite tactic is not restricted to propositions. In the following example, we use
rewrite H at v to rewrite the hypothesis v : vector A n to v : vector A 0.

import data.examples.vector
open nat

variables {A : Type} {n : nat}
example (H : n = 0) (v : vector A n) : vector A 0 :=
begin

rewrite H at v,
exact v

end

Given a rewrite (t : l = r), the tactic rewrite t by default locates a sub-term
s which matches the left-hand-side l, and then replaces all occurrences of s with the
corresponding right-hand-side. The notation at {i_1, ..., i_k} can be used to restrict
which occurrences of the sub-term s are replaced. For example, rewrite t at {1, 3}
specifies that only the first and third occurrences should be replaced.

variables (f : nat → nat → nat → nat) (a b : nat)

example (H1 : a = b) (H2 : f b a b = 0) : f a a a = 0 :=
by rewrite [H1 at {1, 3}, H2]

Similarly, rewrite t at H {1, 3} specifies that t must be applied to hypothesis H and only
the first and third occurrences must be replaced. You can also specify which occurrences
should not be replaced using the notation rewrite t at -{i_1, ..., i_k}. Here is the
previous example using this feature.

CHAPTER 11. TACTIC-STYLE PROOFS 165

example (H1 : a = b) (H2 : f b a b = 0) : f a a a = 0 :=
by rewrite [H1 at -{2}, H2]

So far, we have used theorems and hypotheses as rewriting rules. In these cases, the
term t is just an identifier. The notation rewrite (t) can be used to provide an arbitrary
term t as a rewriting rule.

open algebra

variables {A : Type} [s : group A]
include s

theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a ¹ = b :=
by rewrite [-(mul_one a ¹), -H, inv_mul_cancel_left]

In the example above, the term mul_one a ¹ has type a ¹ * 1 = a ¹. Thus, the rewrite
step -(mul_one a ¹) replaces a ¹ with a ¹ * 1.

Calculational proofs and the rewrite tactic can be used together.

example (a b c : nat) (H1 : a = b) (H2 : b = c + 1) : a ̸= 0 :=
calc

a = succ c : by rewrite [H1, H2, add_one]
... ̸= 0 : succ_ne_zero c

The rewrite tactic also supports reduction steps: ↑f, ▶*, ↓t, and ▶t. The step ↑f
unfolds f and performs beta/iota reduction and simplify projections. This step fails if
there is no f to be unfolded. The step ▶* is similar to ↑f, but does not take a constant
to unfold as argument, therefore it never fails. The fold step ↓t unfolds the head symbol
of t, then search for the result in the goal (or a given hypothesis), and replaces any match
with t. Finally, ▶t tries to reduce the goal (or a given hypothesis) to t, and fails if it is
not convertible to t. (The up arrow is entered with \u, the down arrow is entered with \d,
and the right triangle is entered with \t. You can also use the ASCII alternatives ^f, >*,
<d t, and > t for ↑f, ▶*, ↓t, and ▶t, respectively.)

definition double (x : nat) := x + x

variable f : nat → nat

example (x y : nat) (H1 : double x = 0) (H3 : f 0 = 0) : f (x + x) = 0 :=
by rewrite [↑double at H1, H1, H3]

The step ↑double at H1 unfolds double in the hypothesis H1. The notation rewrite
↑[f_1, ..., f_n] is shorthand for rewrite [↑f_1, ..., ↑f_n]

The tactic esimp is a shorthand for rewrite ▶*. Here are two simple examples:

CHAPTER 11. TACTIC-STYLE PROOFS 166

open sigma nat

example (x y : nat) (H : (fun (a : nat), pr1 ⟨a, y⟩) x = 0) : x = 0 :=
begin

esimp at H,
exact H

end

example (x y : nat) (H : x = 0) : (fun (a : nat), pr1 ⟨a, y⟩) x = 0 :=
begin

esimp,
exact H

end

Here is an example where the fold step is used to replace a + 1 with f a in the main goal.

open nat

definition foo [irreducible] (x : nat) := x + 1

example (a b : nat) (H : foo a = b) : a + 1 = b :=
begin

rewrite ↓foo a,
exact H

end

Here is another example: given any type A, we show that the list A append operation
s ++ t is associative.

import data.list
open list
variable {A : Type}

theorem append_assoc : ∀ (s t u : list A), s ++ t ++ u = s ++ (t ++ u)
| append_assoc nil t u := by apply rfl
| append_assoc (a :: l) t u :=

begin
rewrite ▶ a :: (l ++ t ++ u) = _,
rewrite append_assoc

end

We discharge the inductive cases using the rewrite tactic. The base case is solved by
applying reflexivity, because nil ++ t ++ u and nil ++ (t ++ u) are definitionally equal.
In the inductive step, we first reduce the goal a :: s ++ t ++ u = a :: s ++ (t ++ u)
to a :: (s ++ t ++ u) = a :: s ++ (t ++ u) by applying the reduction step ▶ a ::
(l ++ t ++ u) = _. The idea is to expose the term l ++ t ++ u, which can be rewritten
using the inductive hypothesis append_assoc (s t u : list A) : s ++ t ++ u = s
++ (t ++ u). Notice that we used a placeholder _ in the right-hand-side of this reduction
step; this placeholder is unified with the right-hand-side of the main goal. As a result, we
do not have the copy the right-hand side of the goal.

CHAPTER 11. TACTIC-STYLE PROOFS 167

The rewrite tactic supports type classes. In the following example we use theorems
from the mul_zero_class and add_monoid classes in an example for the comm_ring class.
The rewrite is acceptable because every comm_ring (commutative ring) is an instance of
the classes mul_zero_class and add_monoid.

import algebra.ring
open algebra

example {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 :=
begin

rewrite [+mul_zero, +zero_mul, +add_zero]
end

There are two variants of rewrite, namely krewrite and xrewrite, that are more
aggressive about matching patterns. krewrite will unfold definitions as long as the head
symbol matches, for example, when trying to match a pattern f p with an expression f t.
In contrast, xrewrite will unfold all definitions that are not marked irreducible. Both are
computationally expensive and should be used sparingly. krewrite is often useful when
matching patterns requires unfolding projections in an algebraic structure.

12

Axioms and Computation

We have seen that the version of the Calculus of Inductive Constructions that has been
implemented in Lean includes Pi types, and inductive types, and a nested hierarchy of
universes with an impredicative, proof-irrelevant Prop at the bottom. In this chapter, we
consider extensions of the CIC with additional axioms and rules. Extending a foundational
system in such a way is often convenient; it can make it possible to prove more theorems,
as well as make it easier to prove theorems that could have been proved otherwise. But
there can be negative consequences of adding additional axioms, consequences which may
go beyond concerns about their correctness. In particular, the use of axioms bears on the
computational content of definitions and theorems, in ways we will explore here.

Lean is designed to support both computational and classical reasoning. Users that are
so inclined can stick to a “computationally pure” fragment, which guarantees that closed
expressions in the system evaluate to canonical normal forms. In particular, any closed
computationally pure expression of type N, for example, denoting a natural number will
reduce to a numeral.

To support classical reasoning, Lean’s standard library defines one choice axiom, which
is justified on a set-theoretic interpretation of type theory. In the standard library, the
law of the excluded middle is a consequence of this axiom. The library also imports two
semi-constructive (or mildly classical) axioms, propositional extensionality and quotients.
These are used, for example, to develop theories of sets and finite sets. Even some computa-
tionally inclined users may also wish to use the law of the excluded middle to reason about
computation. Below we will describe the effects that these axioms have on computation
aspects of the system.

However, the classical choice axiom (also known as the Hilbert operator) is entirely
inimical to a computational interpretation of the system, which magically produces “data”

168

CHAPTER 12. AXIOMS AND COMPUTATION 169

from a proposition asserting its existence. Its use is essential to some classical constructions,
and users can import it when needed. But expressions that depend on this construction
lose their computational content, and in Lean we are required to mark such definitions as
noncomputable to flag that fact.

Historical and Philosophical Context
For most of its history, mathematics was essentially computational: geometry dealt with
constructions of geometric objects, algebra was concerned with algorithmic solutions to
systems of equations, and analysis provided means to compute the future behavior of
systems evolving over time. From the proof of a theorem to the effect that “for every
x, there is a y such that …”, it was generally straightforward to extract an algorithm to
compute such a y given x.

In the nineteenth century, however, increases in the complexity of mathematical argu-
ments pushed mathematicians to develop new styles of reasoning that suppress algorithmic
information and invoke descriptions of mathematical objects that abstract away the details
of how those objects are represented. The goal was to obtain a powerful “conceptual” under-
standing without getting bogged down in computational details, but this had the effect of
admitting mathematical theorems that are simply false on a direct computational reading.

There is still fairly uniform agreement today that computation is important to math-
ematics. But there are different views as to how best to address computational concerns.
From a constructive point of view, it is a mistake to separate mathematics from its compu-
tational roots; every meaningful mathematical theorem should have a direct computational
interpretation. From a classical point of view, it is more fruitful to maintain a separation
of concerns: we can use one language and body of methods to write computer programs,
while maintaining the freedom to use a nonconstructive theories and methods to reason
about them. Lean is designed to support both of these approaches. Core parts of the
library are developed constructively, but the system also provides support for carrying out
classical mathematical reasoning.

Computationally, the “purest” part of dependent type theory avoids the use of Prop
entirely. Inductive types and Pi types can be viewed as data types, and terms of these
types can be “evaluated” by applying reduction rules until no more rules can be applied. In
principle, any closed term (that is, term with no free variables) of type N should evaluate
to a numeral, succ (... (succ zero)...).

Introducing a proof-irrelevant Prop and marking theorems irreducible represents a first
step towards separation of concerns. The intention is that elements of a type P : Prop
should play no role in computation, and so the particular construction of a term t : P
is “irrelevant” in that sense. One can still define computational objects the incorporate
elements of type Prop; the point is that these elements can help us reason about the effects
of the computation, but can be ignored when we extract “code” from the term. Elements

CHAPTER 12. AXIOMS AND COMPUTATION 170

of type Prop are not entirely innocuous, however. They include equations s = t : A
for any type A, and such equations can be used as casts, to type check terms. Below,
we will see examples of how such casts can block computation in the system. However,
computation is still possible under an evaluation scheme that erases propositional content,
ignore intermediate typing constraints, and reduces terms until they reach a normal form.
Current plans for Lean include the development of a fast evaluator along these lines.

Having adopted a proof-irrelevant Prop, one might consider it legitimate to use, for
example, the law of the excluded middle, governing propositions. Of course, this, too,
can block computation, but it does not block fast evaluation as described above. From
a constructive point of view, the most objectionable classical axioms are “choice axioms”
that allow us to extract “data” from any existential proposition, completely erasing the
distinction between the proof-irrelevant and data-relevant parts of the theory. These are
discussed in Section Choice Axioms below.

Propositional Extensionality
Propositional extensionality is the following axiom:

axiom propext {a b : Prop} : (a ↔ b) → a = b

It asserts that when two propositions imply one another, they are actually equal. This
is consistent with set-theoretic interpretations in which any element a : Prop is either
empty or the singleton set {*}, for some distinguished element *. The axiom has the the
effect that equivalent propositions can be substituted for one another in any context:

section
open eq.ops
variables a b c d e : Prop
variable P : Prop → Prop

example (H : a ↔ b) : (c ∧ a ∧ d → e) ↔ (c ∧ b ∧ d → e) :=
propext H ▶ !iff.refl

example (H : a ↔ b) (H1 : P a) : P b :=
propext H ▶ H1

end

The first example could be proved more laboriously without propext using the fact that the
propositional connectives respect propositional equivalence. The second example represents
a more essential use of propext. In fact, it is equivalent to propext itself, a fact which we
encourage you to prove.

CHAPTER 12. AXIOMS AND COMPUTATION 171

Function Extensionality
Similar to propositional extensionality, function extensionality asserts that any two func-
tions of type Π x : A, B x that agree on all their inputs are equal.

check @funext
-- ∀ {A : Type} {B : A → Type} {f1 f2 : Π x : A, B x}, (∀ x, f1 x = f2 x) → f1 = f2

From a classical, set-theoretic perspective, this is exactly what it means for two functions
to be equal. This is known as an “extensional” view of functions. From a constructive
perspective, however, it is sometimes more natural to think of functions as algorithms, or
computer programs, that are presented in some explicit way. It is certainly the case that
two computer programs can compute the same answer for every input despite the fact that
they are syntactically quite different. In much the same way, you might want to maintain
a view of functions that does not force you to identify two functions that have the same
input / output behavior. This is known as an “intensional” view of functions.

In fact, function extensionality follows from the existence of quotients, which we de-
scribe in the next section. In the Lean standard library, therefore, funext is thus proved
from the quotient construction.

Suppose that for X : Type we define the set X := X → Prop to denote the type
of subsets of X, essentially identifying subsets with predicates. By combining funext and
propext, we obtain an extensional theory of such sets:

definition set (X : Type) := X → Prop

namespace set

variable {X : Type}

definition mem [reducible] (x : X) (a : set X) := a x
notation e ∈ a := mem e a

theorem setext {a b : set X} (H : ∀ x, x ∈ a ↔ x ∈ b) : a = b :=
funext (take x, propext (H x))

end set

We can then proceed to define the empty set and set intersection, for example, and prove
set identities:

definition empty [reducible] : set X := λ x, false
notation `∅` := empty

definition inter [reducible] (a b : set X) : set X := λ x, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b

theorem inter_self (a : set X) : a ∩ a = a :=

https://github.com/leanprover/lean/blob/master/library/init/funext.lean
https://github.com/leanprover/lean/blob/master/library/init/funext.lean

CHAPTER 12. AXIOMS AND COMPUTATION 172

setext (take x, !and_self)

theorem inter_empty (a : set X) : a ∩ ∅ = ∅ :=
setext (take x, !and_false)

theorem empty_inter (a : set X) : ∅ ∩ a = ∅ :=
setext (take x, !false_and)

theorem inter.comm (a b : set X) : a ∩ b = b ∩ a :=
setext (take x, !and.comm)

The following is an example of how function extensionality blocks computation inside
the Lean kernel.

import data.nat
open nat algebra

definition f1 (x : N) := x
definition f2 (x : N) := 0 + x

theorem feq : f1 = f2 := funext (take x, eq.subst !zero_add rfl)
check eq.rec (0 : N) feq -- N
eval eq.rec (0 : N) feq -- eq.rec 0 feq

First, we show that the two functions f1 and f2 are equal using function extensionality,
and then we “cast” 0 of type N by replacing f1 by f2 in the type. Of course, the cast is
vacuous, because N does not depend on f1. But that is enough to do the damage: under
the computational rules of the system, we now have a closed term of N that does not reduce
to a numeral. In this case, we may be tempted to “reduce” the expression to 0. But in
nontrivial examples, eliminating cast changes the type of the term, which might make an
ambient expression type incorrect.

In the next section, we will exhibit a similar example with the quotient construction.
Current research programs, including work on observational type theory and cubical type
theory, aim to extend type theory in ways that permit reductions for casts involving function
extensionality, quotients, and more. But the solutions are not so clear cut, and the rules
of Lean’s underlying calculus do not sanction such reductions.

In a sense, however, a cast does not change the “meaning” of an expression. Rather, it is
a mechanism to reason about the expression’s type. Given an appropriate semantics, it then
makes sense to reduce terms in ways that preserve their meaning, ignoring the intermediate
bookkeeping needed to make the reductions type correct. In that case, adding new axioms
in Prop does not matter; by proof irrelevance, an expression in Prop carries no information,
and can be safely ignored by the reduction procedures.

CHAPTER 12. AXIOMS AND COMPUTATION 173

Quotients
Let A be any type, and let R be an equivalence relation on A. It is mathematically common
to form the “quotient” A / R, that is, the type of elements of A “modulo” R. Set theoretically,
one can view A / R as the set of equivalence classes of A modulo R. If f : A → B is
any function that respects the equivalence relation in the sense that for every x y : A,
R x y implies f x = f y, then f “lifts” to a function f' : A / R → B defined
on each equivalence class [x] by f' [x] = f x. Lean’s standard library extends the
Calculus of Inductive Constructions with additional constants that perform exactly these
constructions, and installs this last equation as a definitional reduction rule.

First, it is useful to define the notion of a setoid, which is simply a type with an
associated equivalence relation:

structure setoid [class] (A : Type) :=
(r : A → A → Prop) (iseqv : equivalence r)

namespace setoid
infix `≈` := setoid.r

variable {A : Type}
variable [s : setoid A]
include s

theorem refl (a : A) : a ≈ a :=
and.elim_left (@setoid.iseqv A s) a

theorem symm {a b : A} : a ≈ b → b ≈ a :=
λ H, and.elim_left (and.elim_right (@setoid.iseqv A s)) a b H

theorem trans {a b c : A} : a ≈ b → b ≈ c → a ≈ c :=
λ H1 H2, and.elim_right (and.elim_right (@setoid.iseqv A s)) a b c H1 H2

end setoid

Given a type A, a relation R on A, and a proof p that R is an equivalence relation, we
can define setoid.mk p as an instance of the setoid class. Lean’s type class inference
mechanism then allows us to use the generic notation ≈ for R, and to use the generic
theorems setoid.refl, setoid.symm, setoid.trans to reason about R.

The quotient package consists of the following constructors:

open setoid
constant quot.{l} : Π {A : Type.{l}}, setoid A → Type.{l}

namespace quot
constant mk : Π {A : Type} [s : setoid A], A → quot s
notation `⟦`:max a `⟧`:0 := mk a

constant sound : Π {A : Type} [s : setoid A] {a b : A}, a ≈ b → ⟦a⟧ = ⟦b⟧
constant lift : Π {A B : Type} [s : setoid A] (f : A → B), (∀ a b, a ≈ b → f a = f b) → quot s → B
constant ind : ∀ {A : Type} [s : setoid A] {B : quot s → Prop}, (∀ a, B ⟦a⟧) → ∀ q, B q

end quot

CHAPTER 12. AXIOMS AND COMPUTATION 174

For any type A with associated equivalence relation R, first we declare a setoid instance s
to associate R as “the” equivalence relation on A. Once we do that, quot s denotes the
quotient type A / R, and given a : A, ⟦a⟧ denotes the “equivalence class” of a. The
meaning of constants sound, lift, and ind are given by their types. In particular, lift
is the function which lifts a function f : A → B that respects the equivalence relation
to the function lift f : quot s → B which lifts f to A / R. After declaring the
constants associated with the quotient type, the library file then calls an internal function,
init_quotient, which installs the reduction that simplifies lift f ⟦a⟧ to f a.

To illustrate the use of quotients, let us define the type of ordered pairs. In the standard
library, A × B represents the Cartesian product of the types A and B. We can view it as
the type of pairs (a, b) where a : A and b : B. We can use quotient types to define
the type of unordered pairs of type A. We can use the notation {a1, a2} to represent the
unordered pair containing a1 and a2. Moreover, we want to be able to prove the equality
{a1, a2} = {a2, a1}. We start this construction by defining a relation p ~ q on A × A.

import data.prod
open prod prod.ops quot

private definition eqv {A : Type} (p1 p2 : A × A) : Prop :=
(p1.1 = p2.1 ∧ p1.2 = p2.2) ∨ (p1.1 = p2.2 ∧ p1.2 = p2.1)

infix `~` := eqv

To make the proofs more compact, we open the namespaces eq and or. Thus, we
can write symm, trans, inl and inr instead of eq.symm, eq.trans, or.inl and or.inr
respectively. We also define the notation ⟨H1, H2⟩ for (and.intro H1 H2).

open eq or

local notation `⟨` H1 `,` H2 `⟩` := and.intro H1 H2

The next step is to prove that eqv is an equivalence relation, which is to say, it is
reflexive, symmetric and transitive. We can prove these three facts in a convenient and
readable way by using dependent pattern matching to perform case-analysis and break the
hypotheses into pieces that are then reassembled to produce the conclusion.

private theorem eqv.refl {A : Type} : ∀ p : A × A, p ~ p :=
take p, inl ⟨rfl, rfl⟩

private theorem eqv.symm {A : Type} : ∀ p1 p2 : A × A, p1 ~ p2 → p2 ~ p1
| (a1, a2) (b1, b2) (inl ⟨a1b1, a2b2⟩) := inl ⟨symm a1b1, symm a2b2⟩
| (a1, a2) (b1, b2) (inr ⟨a1b2, a2b1⟩) := inr ⟨symm a2b1, symm a1b2⟩

CHAPTER 12. AXIOMS AND COMPUTATION 175

private theorem eqv.trans {A : Type} : ∀ p1 p2 p3 : A × A, p1 ~ p2 → p2 ~ p3 → p1 ~ p3
| (a1, a2) (b1, b2) (c1, c2) (inl ⟨a1b1, a2b2⟩) (inl ⟨b1c1, b2c2⟩) :=

inl ⟨trans a1b1 b1c1, trans a2b2 b2c2⟩
| (a1, a2) (b1, b2) (c1, c2) (inl ⟨a1b1, a2b2⟩) (inr ⟨b1c2, b2c1⟩) :=

inr ⟨trans a1b1 b1c2, trans a2b2 b2c1⟩
| (a1, a2) (b1, b2) (c1, c2) (inr ⟨a1b2, a2b1⟩) (inl ⟨b1c1, b2c2⟩) :=

inr ⟨trans a1b2 b2c2, trans a2b1 b1c1⟩
| (a1, a2) (b1, b2) (c1, c2) (inr ⟨a1b2, a2b1⟩) (inr ⟨b1c2, b2c1⟩) :=

inl ⟨trans a1b2 b2c1, trans a2b1 b1c2⟩

private theorem is_equivalence (A : Type) : equivalence (@eqv A) :=
mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A)

Now that we have proved that eqv is an equivalence relation, we can construct a setoid
(A × A), and use it to define the type uprod A of unordered pairs. Moreover, we define
the unordered pair {a1, a2} as ⟦(a1, a2)⟧.

definition uprod.setoid [instance] (A : Type) : setoid (A × A) :=
setoid.mk (@eqv A) (is_equivalence A)

definition uprod (A : Type) : Type :=
quot (uprod.setoid A)

namespace uprod
definition mk {A : Type} (a1 a2 : A) : uprod A :=
⟦(a1, a2)⟧

notation `{` a1 `,` a2 `}` := mk a1 a2
end uprod

Now, we can easily prove that {a1, a2} = {a2, a1} using the quot.sound since (a1,
a2) ~ (a2, a1).

theorem mk_eq_mk {A : Type} (a1 a2 : A) : {a1, a2} = {a2, a1} :=
quot.sound (inr ⟨rfl, rfl⟩)

To complete the example, given a : A and u : uprod A, we define the proposition a
∈ u which should hold if a is one of the elements of the unordered pair u. First, we define
a similar proposition mem_fn a u on (ordered) pairs; then, we show that mem_fn respects
the equivalence relation eqv, in the lemma mem_respects. This is an idiom that is used
extensively in the Lean standard library.

private definition mem_fn {A : Type} (a : A) : A × A → Prop
| (a1, a2) := a = a1 ∨ a = a2

-- auxiliary lemma for proving mem_respects
private lemma mem_swap {A : Type} {a : A} : ∀ {p : A × A}, mem_fn a p = mem_fn a (swap p)

CHAPTER 12. AXIOMS AND COMPUTATION 176

| (a1, a2) := propext (iff.intro
(λ l : a = a1 ∨ a = a2, or.elim l (λ h1, inr h1) (λ h2, inl h2))
(λ r : a = a2 ∨ a = a1, or.elim r (λ h1, inr h1) (λ h2, inl h2)))

private lemma mem_respects {A : Type} : ∀ {p1 p2 : A × A} (a : A), p1 ~ p2 → mem_fn a p1 = mem_fn a p2
| (a1, a2) (b1, b2) a (inl ⟨a1b1, a2b2⟩) :=

begin esimp at a1b1, esimp at a2b2, rewrite [a1b1, a2b2] end
| (a1, a2) (b1, b2) a (inr ⟨a1b2, a2b1⟩) :=

begin esimp at a1b2, esimp at a2b1, rewrite [a1b2, a2b1], apply mem_swap end

definition mem {A : Type} (a : A) (u : uprod A) : Prop :=
quot.lift_on u (λ p, mem_fn a p) (λ p1 p2 e, mem_respects a e)

infix `∈` := mem

theorem mem_mk_left {A : Type} (a b : A) : a ∈ {a, b} :=
inl rfl

theorem mem_mk_right {A : Type} (a b : A) : b ∈ {a, b} :=
inr rfl

theorem mem_or_mem_of_mem_mk {A : Type} {a b c : A} : c ∈ {a, b} → c = a ∨ c = b :=
λ h, h

The quotient construction can be used to derive function extensionality, and we have
seen that the latter blocks computation. The following provides another example of the
same phenomenon, similar to the one we discussed in the last section.

import data.finset
open finset quot list nat

definition s1 : finset nat := to_finset [1, 2]
definition s2 : finset nat := to_finset [2, 1]

theorem seq : s1 = s2 := dec_trivial
check eq.rec (0 : N) seq
eval eq.rec (0 : N) seq

Choice Axioms
The following axiom is used to support classical reasoning in Lean:

axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) :
{ x | (∃ y : A, P y) → P x}

This asserts that given any predicate P on a nonempty type A, we can (magically) produce
an element x with the property that if any element of A satisfies P, then x does. In the
presence of classical logic, we could prove this from the slightly weaker axiom:

CHAPTER 12. AXIOMS AND COMPUTATION 177

axiom indefinite_description {A : Type} {P : A → Prop} (H : ∃ x, P x) :
{x : A | P x}

This says that knowing that there is an element of A satisfying P is enough to produce one.
This axiom essentially undoes the separation of data from propositions, because it allows
us to extract a piece of data — an element of A satisfying P — from the proposition that
such an element exists.

The axiom strong_indefinite_description is imported when you import logic.choice.
Separating the x asserted to exist by the axiom from the property it satisfies allows us to
define the Hilbert epsilon function:

noncomputable definition epsilon {A : Type} [H : nonempty A] (P : A → Prop) : A :=
let u : {x | (∃ y, P y) → P x} :=

strong_indefinite_description P H in
elt_of u

theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃ y, P y) :
P (@epsilon A H P) :=

let u : {x | (∃ y, P y) → P x} :=
strong_indefinite_description P H in

has_property u Hex

theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃ y, P y) :
P (@epsilon A (nonempty_of_exists Hex) P) :=

epsilon_spec_aux (nonempty_of_exists Hex) P Hex

Assuming the type A is nonempty, epsilon P returns an element of A, with the property that
if any element of A satisfies P, epsilon P does. Notice that the definition is preceded by the
keyword noncomputable, to signal the fact that expressions depending on this definition
will not compute to canonical normal forms, even under the more liberal evaluation scheme
described above.

Just as indefinite_description is a weaker version of strong_indefinite_description,
the some operator is a weaker version of the epsilon operator. It is sometimes easier to
use. Assuming H : ∃ x, P x is a proof that some element of A satisfies P, some H denotes
such an element.

noncomputable definition some {A : Type} {P : A → Prop} (H : ∃ x, P x) : A :=
@epsilon A (nonempty_of_exists H) P

theorem some_spec {A : Type} {P : A → Prop} (H : ∃ x, P x) : P (some H) :=
epsilon_spec H

Excluded Middle
The law of the excluded middle is the following

CHAPTER 12. AXIOMS AND COMPUTATION 178

check @em
-- ∀ (a : Prop), a ∨ ¬a

We can prove it using the choice axiom described in the previous section. This is a conse-
quence of Diaconescu’s theorem which states that the axiom of choice is sufficient to derive
the law of excluded middle. More precisely, it shows that the law of the excluded middle
follows from strong_indefinite_description (Hilbert’s choice), propext (propositional
extensionality) and funext (function extensionality). The standard library contains this
proof, which we reproduce here.

First, we import the necessary axioms, fix a parameter, p, and define two predicates U
and V:

import logic.eq
open classical eq.ops

section
parameter p : Prop

definition U (x : Prop) : Prop := x = true ∨ p
definition V (x : Prop) : Prop := x = false ∨ p

If p is true, then every element of Prop is in both U and V. If p is false, then U is the
singleton true, and V is the singleton false.

Next, we use epsilon to choose an element from each of U and V:

noncomputable definition u := epsilon U
noncomputable definition v := epsilon V

lemma u_def : U u :=
epsilon_spec (exists.intro true (or.inl rfl))

lemma v_def : V v :=
epsilon_spec (exists.intro false (or.inl rfl))

Each of U and V is a disjunction, so u_def and v_def represent four cases. In one of these
cases, u = true and v = false, and in all the other cases, p is true. Thus we have:

lemma not_uv_or_p : ¬(u = v) ∨ p :=
or.elim u_def

(assume Hut : u = true,
or.elim v_def
(assume Hvf : v = false,

have Hne : ¬(u = v), from Hvf ¹ ▶ Hut ¹ ▶ true_ne_false,
or.inl Hne)

(assume Hp : p, or.inr Hp))
(assume Hp : p, or.inr Hp)

http://en.wikipedia.org/wiki/Diaconescu%27s_theorem
https://github.com/leanprover/lean/blob/master/library/logic/choice.lean
https://github.com/leanprover/lean/blob/master/library/logic/choice.lean

CHAPTER 12. AXIOMS AND COMPUTATION 179

On the other hand, if p is true, then, by function extensionality and propositional exten-
sionality, U and V are equal. By the definition of u and v, this implies that they are equal
as well.

lemma p_implies_uv : p → u = v :=
assume Hp : p,
have Hpred : U = V, from

funext (take x : Prop,
have Hl : (x = true ∨ p) → (x = false ∨ p), from

assume A, or.inr Hp,
have Hr : (x = false ∨ p) → (x = true ∨ p), from

assume A, or.inr Hp,
show (x = true ∨ p) = (x = false ∨ p), from
propext (iff.intro Hl Hr)),

have H' : epsilon U = epsilon V, from Hpred ▶ rfl,
show u = v, from H'

Putting these last two facts together yields the desired conclusion:

theorem EM : p ∨ ¬p :=
have H : ¬(u = v) → ¬p, from mt p_implies_uv,
or.elim not_uv_or_p

(assume Hne : ¬(u = v), or.inr (H Hne))
(assume Hp : p, or.inl Hp)

Consequences of excluded middle include double-negation elimination, proof by cases,
and proof by contradiction, all of which are described in Section Classical Logic.

The law of the excluded middle and propositional extensionality imply propositional
completeness:

theorem prop_complete (a : Prop) : a = true ∨ a = false :=
or.elim (em a)

(λ t, or.inl (propext (iff.intro (λ h, trivial) (λ h, t))))
(λ f, or.inr (propext (iff.intro (λ h, absurd h f) (λ h, false.elim h))))

Propositional Decidability
Taken together, the law of the excluded middle and the axiom of indefinite description imply
that every proposition is decidable. The following is the contained in logic.choice:

noncomputable definition decidable_inhabited [instance] (a : Prop) : inhabited (decidable a) :=
inhabited_of_nonempty

(or.elim (em a)
(assume Ha, nonempty.intro (inl Ha))
(assume Hna, nonempty.intro (inr Hna)))

noncomputable definition prop_decidable [instance] (a : Prop) : decidable a :=
arbitrary (decidable a)

CHAPTER 12. AXIOMS AND COMPUTATION 180

The definition decidable_inhabited uses the law of the excluded middle to show that
decidable a is inhabited for any a. It is marked as an instance, and is silently used for
for synthesizing the implicit argument in arbitrary (decidable a).

As an example, we use some to prove that if f : A → B is injective and A is inhabited,
then f has a left inverse. To define the left inverse linv, we use the “dependent if-then-else”
expression. Recall that if h : c then t else e is notation for dite c (λ h : c, t)
(λ h : ¬ c, e). In the definition of linv, the strong_indefinite_description is used
twice: first, to show that (∃ a : A, f a = b) is “decidable”, and then to choose an a
such that f a = b. From a classical point of view, linv is a function. From a constructive
point of view, it is unacceptable; since there is no way to implement such a function in
general, the construction is not informative.

open classical function

noncomputable definition linv {A B : Type} [h : inhabited A] (f : A → B) : B → A :=
λ b : B, if ex : (∃ a : A, f a = b) then some ex else arbitrary A

theorem has_left_inverse_of_injective {A B : Type} {f : A → B}
: inhabited A → injective f → ∃ g, g ◦ f = id :=

assume h : inhabited A,
assume inj : ∀ a1 a2, f a1 = f a2 → a1 = a2,
have is_linv : (linv f) ◦ f = id, from

funext (λ a,
assert ex : ∃ a1 : A, f a1 = f a, from exists.intro a rfl,
have feq : f (some ex) = f a, from !some_spec,
calc linv f (f a) = some ex : dif_pos ex

... = a : inj _ _ feq),
exists.intro (linv f) is_linv

Constructive Choice
In the standard library, we say a type A is encodable if there are functions f : A → nat
and g : nat → option A such that for all a : A, g (f a) = some a. Here is the precise
definition:

structure encodable [class] (A : Type) :=
(encode : A → nat) (decode : nat → option A) (encodek : ∀ a, decode (encode a) = some a)

The standard library shows that indefinite_description axiom is actually a theorem
for any encodable type A and decidable predicate p : A → Prop. It provides the
following definition and theorem, which are concrete realizations of some and some_spec,
respectively.

check @choose
-- choose : Π {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p], (∃ (x : A), p x) → A

CHAPTER 12. AXIOMS AND COMPUTATION 181

check @choose_spec
-- choose_spec : ∀ {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] (ex : ∃ (x : A), p x), p (choose ex)

The construction is straightforward: it finds a : A satisfying p by enumerating the
elements of A and testing whether they satisfy p or not. We can show that this search
always terminates because we have the assumption ∃ (x : A), p x.

We can use this to provide a constructive version of the theorem has_left_inverse_of_injective.
We remark this is not the only possible version. The constructive version contains more hy-
potheses than the classical version. In Bishop’s terminology, it avoids “pseudo-generality.”
Considering the classical construction, it is clear that once we have choose, we can con-
struct the left inverse as long as we can decide whether b is in the image of a function f :
A → B.

import data.encodable
open encodable function

section
parameters {A B : Type}
parameter (f : A → B)
parameter [inhA : inhabited A]
parameter [dex : ∀ b, decidable (∃ a, f a = b)]
parameter [encA : encodable A]
parameter [deqB : decidable_eq B]
include inhA dex encA deqB

definition finv : B → A :=
λ b : B, if ex : (∃ a, f a = b) then choose ex else arbitrary A

theorem has_left_inverse_of_injective : injective f → has_left_inverse f :=
assume inj : ∀ a1 a2, f a1 = f a2 → a1 = a2,
have is_linv : ∀ a, finv (f a) = a, from
(take a,

assert ex : ∃ a1, f a1 = f a, from exists.intro a rfl,
have feq : f (choose ex) = f a, from !choose_spec,
calc finv (f a) = choose ex : dif_pos ex

... = a : inj _ _ feq),
exists.intro finv is_linv

end

The argument is essentially the same as the classical one; we have simply replaced the clas-
sical some with the constructive choice function choose, and added three extra hypotheses:
dex, encA and deqB. The first one makes sure we can decide whether a value b is in the
image of f or not, and the last two are needed to use choose.

The standard library contains many encodable types and shows that many types have
decidable equality. The hypothesis dex can be satisfied in many cases. For example, it is
trivially satisfied if f is surjective. It is also satisfied whenever A is finite.

CHAPTER 12. AXIOMS AND COMPUTATION 182

section
parameters {A B : Type} (f : A → B)

definition decidable_in_image_of_surjective : surjective f → ∀ b, decidable (∃ a, f a = b) :=
assume s : surjective f, take b,
decidable.inl (s b)

definition decidable_in_image_of_fintype_of_deceq [instance]
[finA : fintype A] [deqB : decidable_eq B] : ∀ b, decidable (∃ a, f a = b) :=

take b, decidable_exists_finite
end

Tracking used axioms
The Lean standard library contains only 3 axioms: quot.sound, propext and strong_indefinite_description.
Most of the library depends only on the first two. The command print axioms displays all
axioms that have been asserted/imported into the current logical context. Similarly, the
command print axioms decl_name prints all axioms the declaration decl_name depends
on.

IMPORTANT : in the Lean web version, we erase the proof of most theorems. The idea
is to reduce the size of the file that must be downloaded to run Lean on your web browser.
So, the result of the print axioms commands is not precise on the web version. Please
use the Lean native application if you are interested in using these commands.

print axioms
print axioms nat.add
print axioms finset.union
print axioms set.empty_union
print axioms classical.some

13

More Tactics

We have seen that tactics provide a powerful language for describing and constructing
proofs. Care is required: a proof that is a long string of tactic applications can be very
hard to read and maintain. But when combined with the various structuring mechanisms
that Lean’s proof language has to offer, they provide efficient means for filling in the details
of a proof. The goal of this chapter is to add some additional tactics to your repertoire.

[This chapter is still under construction.]

Induction
Just as the cases tactic performs proof by cases on an element of an inductively defined
type, the induction tactic performs a proof by induction. As with the cases tactic, the
with clause allows you to name the variables and hypotheses that are introduced. Also
as with the cases tactic, the induction tactic will revert any hypotheses that depend on
the induction variable and then reintroduce them for you automatically. The following
examples prove the commutativity of addition on the natural numbers, using only the
defining equations for addition (in particular, the property add_succ, which asserts that x
+ succ y = succ (x + y) for every x and y).

open nat

theorem zero_add (x : N) : 0 + x = x :=
begin

induction x with x ih,
{exact rfl},

rewrite [add_succ, ih]
end

183

CHAPTER 13. MORE TACTICS 184

theorem succ_add (x y : N) : succ x + y = succ (x + y) :=
begin

induction y with y ih,
{exact rfl},

rewrite [add_succ, ih]
end

theorem add.comm (x y : N) : x + y = y + x :=
begin

induction x with x ih,
{show 0 + y = y + 0, by rewrite zero_add},

show succ x + y = y + succ x,
begin
induction y with y ihy,

{krewrite zero_add},
rewrite [succ_add, ih]

end
end

(For the use of krewrite here, see the end of Chapter Tactic-Style Proofs.)
The induction tactic can be used not only with the induction principles that are created

automatically when an inductive type is defined, but also induction principles that prove
on their own. For example, recall that the standard library defines the type finset A of
finite sets of elements of any type A. Typically, we assume A has decidable equality, which
means in particular that we can decide whether an element a : A is a member of a finite
set s. Clearly, a property P holds for an arbitrary finite set when it holds for the empty set
and when it is maintained for a finite set s after a new element a, that was not previosly
in s, is added to s. This is encapsulated by the following principle of induction:

theorem finset.induction {A : Type} [h : decidable_eq A] {P : finset A → Prop}
(H1 : P finset.empty)
(H2 : ∀ {|a : A|} {s : finset A}, a /∈ s → P s → P (insert a s))
: (∀ s, P s)

To use this as an induction principle, one has to mark it with the attribute [recursor
6], which tells the induction tactic that this is a user defined induction principle in which
induction is carried out on the sixth argument. This is done in the standard library. Then,
when induction is carried out on an element of finset, the induction tactic finds the
relevant principle.

import data.finset data.nat
open finset nat

variables (A : Type) [deceqA : decidable_eq A]
include deceqA

theorem card_add_card (s1 s2 : finset A) : card s1 + card s2 = card (s1 ∪ s2) + card (s1 ∩ s2) :=
begin

induction s2 with a s2 hs2 ih,

CHAPTER 13. MORE TACTICS 185

show card s1 + card (∅:finset A) = card (s1 ∪ ∅) + card (s1 ∩ ∅),
by rewrite [union_empty, card_empty, inter_empty],

show card s1 + card (insert a s2) = card (s1 ∪ (insert a s2)) + card (s1 ∩ (insert a s2)),
from sorry

end

The proof is carried out by induction on s2. According to the with clause, the inductive
step concerns the set insert a s2 in place of s2, hs2 denotes the assuption a /∈ s2, and ih
denotes the inductive hypothesis. (The full proof can be found in the library.) If necessary,
we can specify the induction principle manually:

theorem card_add_card (s1 s2 : finset A) : card s1 + card s2 = card (s1 ∪ s2) + card (s1 ∩ s2) :=
begin

induction s2 using finset.induction with a s2 hs2 ih,
show card s1 + card (∅:finset A) = card (s1 ∪ ∅) + card (s1 ∩ ∅),

by rewrite [union_empty, card_empty, inter_empty],
show card s1 + card (insert a s2) = card (s1 ∪ (insert a s2)) + card (s1 ∩ (insert a s2)),

from sorry
end

Other Tactics
The tactic subst substitutes a variable defined in the context, and clears both the variable
and the hypothesis. The tactic substvars substitutes all the variables in the context.

import data.nat
open nat

variables a b c d : N

example (Ha : a = b + c) : c + a = c + (b + c) :=
by subst a

example (Ha : a = b + c) (Hd : d = b) : a + d = b + c + d :=
by subst [a, d]

example (Ha : a = b + c) (Hd : d = b) : a + d = b + c + d :=
by substvars

example (Ha : a = b + c) (Hd : b = d) : a + d = d + c + d :=
by substvars

example (Hd : b = d) (Ha : a = b + c) : a + d = d + c + d :=
by substvars

A number of tactics are designed to help construct elements of inductive types. For
example constructor <i> constructs an element of an inductive type by applying the
ith constructor; constructor alone applies the first constructor that succeeds. The tactic

CHAPTER 13. MORE TACTICS 186

split can only be applied to inductive types with only one constructor, and is then equiv-
alent to constructor 1. Similarly, left and right are designed for use with inductive
types with two constructors, and are then equivalent to constructor 1 and constructor
2, respectively. Here are prototypical examples:

variables p q : Prop

example (Hp : p) (Hq : q) : p ∧ q :=
by split; exact Hp; exact Hq

example (Hp : p) (Hq : q) : p ∧ q :=
by split; repeat assumption

example (Hp : p) : p ∨ q :=
by constructor; assumption

example (Hq : q) : p ∨ q :=
by constructor; assumption

example (Hp : p) : p ∨ q :=
by constructor 1; assumption

example (Hq : q) : p ∨ q :=
by constructor 2; assumption

example (Hp : p) : p ∨ q :=
by left; assumption

example (Hq : q) : p ∨ q :=
by right; assumption

The tactic existsi is similar to constructor 1, but it allows us to provide an argument,
as is commonly done with when introducing an element of an exists or sigma type.

import data.nat
open nat

example : ∃ x : N, x > 2 :=
by existsi 3; exact dec_trivial

example (B : N → Type) (b : B 2) : Σ x : N, B x :=
by existsi 2; assumption

The injection tactic makes use of the fact that constructors to an inductive type are
injective:

import data.nat
open nat

example (x y : N) (H : succ x = succ y) : x = y :=
by injection H with H'; exact H'

CHAPTER 13. MORE TACTICS 187

example (x y : N) (H : succ x = succ y) : x = y :=
by injection H; assumption

The first version gives the name the consequence of applying injectivity to the hypothesis
H. The second version lets Lean choose the name.

The tactics reflexivity, symmetry, and transitivity work not just for equality, but
also for any relation with a corresponding theorem marked with the attribute refl, symm,
or trans, respectively. Here is an example of their use:

variables (A : Type) (a b c d : A)

example (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d :=
by transitivity b; assumption; transitivity c; symmetry; assumption; assumption

The contradiction tactic closes a goal when contradictory hypotheses have been derived:

variables p q : Prop

example (Hp : p) (Hnp : ¬ p) : q :=
by contradiction

Similarly, exfalso and trivial implement “ex falso quodlibet” and the introduction rule
for true, respectively.

Combinators
Combinators are used to combine tactics. The most basic one is the and_then combinator,
written with a semicolon (;), which applies tactics successively.

The par combinator, written with a vertical bar (|), tries one tactic and then the other,
using the first one that succeeds. The repeat tactic applies a tactic repeatedly. Here is an
example of these in use:

example (a b c d : Prop) : a ∧ b ∧ c ∧ d ↔ d ∧ c ∧ b ∧ a :=
begin

apply iff.intro,
repeat (intro H; repeat (cases H with [H', H] | apply and.intro | assumption))

end

Here is another one:

import data.set
open set function eq.ops

variables {X Y Z : Type}

CHAPTER 13. MORE TACTICS 188

lemma image_comp (f : Y → X) (g : X → Y) (a : set X) : (f ◦ g) ' a = f ' (g ' a) :=
set.ext (take z,

iff.intro
(assume Hz,

obtain x Hx1 Hx2, from Hz,
by repeat (apply mem_image | assumption | reflexivity))

(assume Hz,
obtain y [x Hz1 Hz2] Hy2, from Hz,
by repeat (apply mem_image | assumption | esimp [comp] | rewrite Hz2)))

Finally, some tactics can be used to “debug” a tactic proof by printing output to the
screen when Lean is run from the command line. The command trace produces the
given output, state shows the current goal, now fails if there are any current goals, and
check_expr t displays the type of the expression in the context of the current goal.

open tactic

theorem tst {A B : Prop} (H1 : A) (H2 : B) : A :=
by (trace "first"; state; now |

trace "second"; state; fail |
trace "third"; assumption)

Other tactics can be used to manipulate goals. For example, rotate_left or rotate_right
followed by a number rotates through the goals. The tactic rotate is equivalent to
rotate_left.

A

Quick Reference

Note that this quick reference guide describes Lean 2 only.

Displaying Information

check <expr> : check the type of an expression
eval <expr> : evaluate expression
print <id> : print information about <id>
print notation : display all notation
print notation <tokens> : display notation using any of the tokens
print axioms : display assumed axioms
print options : display options set by user or emacs mode
print prefix <namespace> : display all declarations in the namespace
print coercions : display all coercions
print coercions <source> : display only the coercions from <source>
print classes : display all classes
print instances <class name> : display all instances of the given class
print fields <structure> : display all "fields" of a structure
print metaclasses : show kinds of metadata stored in a namespace
help commands : display all available commands
help options : display all available options

Common Options
You can change an option by typing set_option <option> <value>. The <option> field
supports TAB-completion. You can see an explanation of all options using help options.

pp.implicit : display implicit arguments
pp.universes : display universe variables

189

APPENDIX A. QUICK REFERENCE 190

pp.coercions : show coercions
pp.notation : display output using defined notations
pp.abbreviations : display output using defined abbreviations
pp.full_names : use full names for identifiers
pp.all : disable notations, implicit arguments, full names,

universe parameters and coercions
pp.beta : beta reduce terms before displaying them
pp.max_depth : maximum expression depth
pp.max_steps : maximum steps for printing expression
pp.private_names : show internal name assigned to private definitions and theorems
pp.metavar_args : show arguments to metavariables
pp.numerals : print output as numerals

Attributes
These can generally be declared with a definition or theorem, or using the attribute
or local attribute commands.

Example: local attribute nat.add nat.mul [reducible].

reducible : unfold at any time during elaboration if necessary
quasireducible : unfold during higher order unification,

but not during type class resolution
semireducible : unfold when performance is not critical
irreducible : avoid unfolding during elaboration
coercion : use as a coercion between types
class : type class declaration
instance : type class instance
priority <num> : add a priority to an instance or notation
parsing-only : use notation only for input
unfold <num> : if the argument at position <num> is marked with [constructor]

unfold this and that argument (for iota reduction)
constructor : see unfold <num>
unfold-full : unfold definition when fully applied
recursor : user-defined recursor/eliminator, used for the induction tactic
recursor <num> : user-defined non-dependent recursor/eliminator

where <num> is the position of the major premise
refl : reflexivity lemma, used for calc-expressions, tactics and simplifier
symm : symmetry lemma, used for calc-expressions, tactics and simplifier
trans : transitivity lemma, used for calc-expressions, tactics and simplifier
subst : substitution lemma, used for calc-expressions and simplifier

Proof Elements

Term Mode

take, assume : syntactic sugar for lambda
let : introduce local definitions
have : introduce auxiliary fact (opaque, in the body)
assert : like "have", but visible to tactics
show : make result type explicit

APPENDIX A. QUICK REFERENCE 191

suffices : show that the goal follows from this fact
obtain ..., from : destruct structures such as exists, sigma, ...
match ... with : introduce proof or definition by cases
proof ... qed : introduce a proof or definition block, elaborated separately

The keywords have and assert can be anonymous, which is to say, they can be used
without giving a label to the hypothesis. The corresponding element of the context can
then be referred to using the keyword this until another anonymous element is introduced,
or by enclosing the assertion in backticks. To avoid a syntactic ambiguity, the keyword
suppose is used instead of assume to introduce an anonymous assumption.

One can also use anonymous binders (like lambda, take, obtain, etc.) by enclosing
the type in backticks, as in λ `nat`, `nat` + 1. This introduces a variable of the given
type in the context with a hidden name.

Tactic Mode
At any point in a proof or definition you can switch to tactic mode and apply tactics to
finish that part of the proof or definition.

begin ... end : enter tactic mode, and blocking mechanism within tactic mode
{ ... } : blocking mechanism within tactic mode
by ... : enter tactic mode, can only execute a single tactic
begin+; by+ : same as =begin= and =by=, but make local results available
have : as in term mode (enters term mode), but visible to tactics
show : as in term mode (enters term mode)
match ... with : as in term mode (enters term mode)
let : introduce abbreviation (not visible in the context)
note : introduce local fact (opaque, in the body)

Normally, entering tactic mode will make declarations in the local context given by
“have”-expressions unavailable. The annotations begin+ and by+ make all these declara-
tions available.

Sectioning Mechanisms

namespace <id> ... end <id> : begin / end namespace
section ... end : begin / end section
section <id> end <id> : begin / end section

variable (var : type) : introduce variable where needed
variable {var : type} : introduce implicit variable where needed
variable {{var : type}} : introduce implicit variable where needed,

which is not maximally inserted
variable [var : type] : introduce class inference variable where needed
variable {var} (var) [var] : change the bracket type of an existing variable
parameter : introduce variable, fixed within the section

APPENDIX A. QUICK REFERENCE 192

include : include variable in subsequent definitions
omit : undo "include"

Tactics
We say a tactic is more “aggressive” when it uses a more expensive (and complete) unifi-
cation algorithm, and/or unfolds more aggressively definitions.

General tactics

apply <expr> : apply a theorem to the goal, create subgoals for non-dependent premises
fapply <expr> : like apply, but create subgoals also for dependent premises that were

not assigned by unification procedure
eapply <expr> : like apply, but used for applying recursor-like definitions
exact <expr> : apply and close goal, or fail
rexact <expr> : relaxed (and more expensive) version of exact

(this will fully elaborate <expr> before trying to match it to the goal)
refine <expr> : like exact, but creates subgoals for unresolved subgoals

intro <ids> : introduce multiple variables or hypotheses
intros <ids> : same as intro <ids>
intro : let Lean choose a name
intros : introduce variables as long as the goal reduces to a function type

and let Lean choose the names

rename <id> <id> : rename a variable or hypothesis
generalize <expr> : generalize an expression
clear <ids> : remove variables or hypotheses
revert <ids> : move variables or hypotheses into the goal
assumption : try to close a goal with something in the context
eassumption : a more aggressive ("expensive") form of assumption

Equational reasoning

esimp : simplify expressions (by evaluation/normalization) in goal
esimp at <id> : simplify hypothesis in context
esimp at * : simplify everything
esimp [<ids>] : unfold definitions and simplify expressions in goal
esimp [<ids>] at <id> : unfold definitions and simplify hypothesis in context
esimp [<ids>] at * : unfold definitions and simplify everything
unfold <id> : similar to (esimp <id>)
fold <expr> : unfolds <expr>, search for convertible term in the

goal, and replace it with <expr>

beta : beta reduce goal
whnf : put goal in weak head normal form
change <expr> : change the goal to <expr> if it is convertible to <expr>

rewrite <rule> : apply a rewrite rule (see below)
rewrite [<rules>] : apply a sequence of rewrite rules (see below)
krewrite : using keyed rewriting, matches any subterm

APPENDIX A. QUICK REFERENCE 193

with the same head as the rewrite rule
xrewrite : a more aggressive form of rewrite

subst <id> : substitute a variable defined in the context, and clear hypothesis and
variable

substvars : substitute all variables in the context

1. Rewrite rules
You can combine rewrite rules from different groups in the following order, starting
with the innermost:

e : match left-hand-side of equation e to a goal subterm,
then replace every occurence with right-hand-side

{p}e : apply e only where pattern p (which may contain placeholders) matches

n t : apply t exactly n times
n>t : apply t at most n times
*t : apply t zero or more times (up to rewriter.max_iter)
+t : apply t one or more times

-t : apply t in reverse direction

↑id : unfold id
↑[ids] : unfold ids
↓id : fold id
▶expr : reduce goal to expression expr
▶* : equivalent to esimp

t at {i, ...} : apply t only at numbered occurences
t at -{i, ...} : apply t only at all but the numbered occurences
t at H : apply t at hypothesis H
t at H {i, ...} : apply t only at numbered occurences in H
t at H -{i, ...} : apply t only at all but the numbered occurences in H
t at * ⊢ : apply t at all hypotheses
t at * : apply t at the goal and all hypotheses

Induction and cases

cases <expr> : decompose an element of an inductive type
cases <expr> with <ids> : name newly introduced variables as specified by <ids>
induction <expr> (with <ids>) : use induction
induction <expr> using <def> : use the definition <def> to apply induction
constructor : construct an element of an inductive type by applying the

first constructor that succeeds
constructor <i> : construct an element of an inductive type by applying the

ith-constructor
fconstructor : construct an element of an inductive type by (fapply)ing the

first constructor that succeeds
fconstructor <i> : construct an element of an inductive type by (fapply)ing the

ith-constructor
injection <id> (with <ids>) : use injectivity of constructors at specified hypothesis
split : equivalent to (constructor 1), only applicable to inductive

APPENDIX A. QUICK REFERENCE 194

datatypes with a single constructor (e.g. and introduction)
left : equivalent to (constructor 1), only applicable to inductive

datatypes with two constructors (e.g. left or introduction)
right : equivalent to (constructor 2), only applicable to inductive

datatypes with two constructors (e.g. right or introduction)
existsi <expr> : similar to (constructor 1) but we can provide an argument,

useful for performing exists/sigma introduction

Special-purpose tactics

contradiction : close contradictory goal
exfalso : implements the "ex falso quodlibet" logical principle
congruence : solve goals of the form (f a_1 ... a_n = f' b_1 ... b_n) by congruence
reflexivity : reflexivity of equality (or any relation marked with attribute refl)
symmetry : symmetry of equality (or any relation marked with attribute symm)
transitivity <expr> : transitivity of equality (or any relation marked with attribute trans)
trivial : apply true introduction

Combinators

and_then <tac1> <tac2> (notation: <tac1> ; <tac2>)
: execute <tac1> and then execute <tac2>, backtracking when needed

(aka sequential composition)
or_else <tac1> <tac2> (notation: (<tac1> | <tac2>))

: execute <tac1> if it fails, execute <tac2>
<tac1>: <tac2> : apply <tac1> and then apply <tac2> to all subgoals generated by <tac1>
par <tac1> <tac2> : execute <tac1> and <tac2> in parallel
fixpoint (fun t, <tac>) : fixpoint tactic, <tac> may refer to t
try <tac> : execute <tac>, if it fails do nothing
repeat <tac> : repeat <tac> zero or more times (until it fails)
repeat1 <tac> : like (repeat <tac>), but fails if <tac> does not succeed at least

once
at_most <num> <tac> : like (repeat <tac>), but execute <tac> at most <num> times
do <num> <tac> : execute <tac> exactly <num> times
determ <tac> : discard all but the first proof state produced by <tac>
discard <tac> <num> : discard the first <num> proof-states produced by <tac>

Goal management

focus_at <tac> <i> : execute <tac> to the ith-goal, and fail if it is not solved
focus <tac> : equivalent to (focus_at <tac> 0)
rotate_left <num> : rotate goals to the left <num> times
rorate_right <num> : rotate goals to the right <num> times
rotate <num> : equivalent to (rotate_left <num>)
all_goals <tac> : execute <tac> to all goals in the current proof state
fail : tactic that always fails
id : tactic that does nothing and always succeeds
now : fail if there are unsolved goals

APPENDIX A. QUICK REFERENCE 195

Information and debugging

state : display the current proof state
check_expr <expr> : display the type of the given expression in the current goal
trace <string> : display the current string
with_options [<options>] <tac> : execute a single tactic with different options

(<options> is a comma-separated list)

Emacs Lean-mode commands

Flycheck commands

C-c ! n : next error
C-c ! p : previous error
C-c ! l : list errors
C-c C-x : execute Lean (in stand-alone mode)

Lean-specific commands

C-c C-k : show how to enter unicode symbol
C-c C-o : set Lean options
C-c C-e : execute Lean command
C-c C-r : restart Lean process
C-c C-p : print the definition of the identifier under the cursor

in a new buffer
C-c C-g : show the current goal at a line of a tactic proof, in a

new buffer
C-c C-f : fill a placeholder by the printed term in the minibuffer.

Note: the elaborator might need more information
to correctly infer the implicit arguments of this term

Unicode Symbols
This section lists some of the Unicode symbols that are used in the Lean library, their
ASCII equivalents, and the keystrokes that can be used to enter them in the Emacs Lean
mode.

APPENDIX A. QUICK REFERENCE 196

Logical symbols

Unicode Ascii Emacs
true
false
¬ not \not, \neg
∧ /\ \and
 ∨ \/ \or
→ -> \to, \r, \implies
↔ <-> \iff, \lr
∀ forall \all
∃ exists \ex
λ fun \l, \fun
̸= ~= \ne

Types

Π Pi \Pi
→ -> \to, \r, \implies
Σ Sigma \S, \Sigma
× prod \times
� sum \union, \u+, \uplus
N nat \nat
Z int \int
Q rat \rat
R real \real

When you open the namespaces prod and sum, you can use * and + for the types
prod and sum respectively. To avoid overwriting notation, these have to have the same
precedence as the arithmetic operations. If you don’t need to use notation for the arith-
metic operations, you can obtain lower-precedence versions by opening the namespaces
low_precedence_times and low_precedence_plus respectively.

Greek letters

Unicode Emacs
α \alpha
β \beta
γ \gamma
… …

APPENDIX A. QUICK REFERENCE 197

Equality proofs (open eq.ops)

Unicode Ascii Emacs
¹ eq.symm \sy, \inv, \-1
· eq.trans \tr
▶ eq.subst \t

Symbols for the rewrite tactic

Unicode Ascii Emacs
↑ ˆ \u
↓ <d \d

Brackets

Unicode Ascii Emacs
⌞t⌟ ?(t) \cll t \clr
{| t |} {{t}} \{{ t \}}
⟨ t ⟩ \< t \>
� t � \<< t \>>

Set theory

Unicode Ascii Emacs
∈ mem \in
/∈ \nin
∩ inter \i
∪ union \un
⊆ subseteq \subeq

Binary relations

Unicode Ascii Emacs
≤ <= \le
≥ >= \ge
| dvd \|
≡ \equiv
≈ \eq

APPENDIX A. QUICK REFERENCE 198

Binary operations

Unicode Ascii Emacs
◦ comp \comp

Bibliography

[1] Thierry Coquand and Gerard Huet. The calculus of constructions. Inf. Comput., 76(2-
3):95–120, February 1988.

[2] Peter Dybjer. Inductive families. Formal Asp. Comput., 6(4):440–465, 1994.

[3] Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pat-
tern matching. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, ed-
itors, Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthday, volume 4060 of Lecture Notes in Computer Science,
pages 521–540. Springer, 2006.

[4] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the cal-
culus of constructions. In Michael G. Main, Austin Melton, Michael W. Mislove, and
David A. Schmidt, editors, Mathematical Foundations of Programming Semantics, 5th
International Conference, Tulane University, New Orleans, Louisiana, USA, March 29
- April 1, 1989, Proceedings, volume 442 of Lecture Notes in Computer Science, pages
209–228. Springer, 1989.

199

	Contents
	Introduction
	Computers and Theorem Proving
	About Lean
	About this Book
	Acknowledgments

	Dependent Type Theory
	Simple Type Theory
	Types as Objects
	Function Abstraction and Evaluation
	Introducing Definitions
	Local definitions
	Variables and Sections
	Namespaces
	Dependent Types
	Implicit Arguments

	Propositions and Proofs
	Propositions as Types
	Working with Propositions as Types
	Propositional Logic
	Introducing Auxiliary Subgoals
	Classical Logic
	Examples of Propositional Validities

	Quantifiers and Equality
	The Universal Quantifier
	Equality
	The Calculation Environment
	The Simplifier
	The Existential Quantifier
	More on the Proof Language

	Interacting with Lean
	Displaying Information
	Setting Options
	Using the Library
	Lean's Emacs Mode
	Projects
	Notation and Abbreviations
	Coercions

	Inductive Types
	Enumerated Types
	Constructors with Arguments
	Inductively Defined Propositions
	Defining the Natural Numbers
	Other Inductive Types
	Generalizations
	Heterogeneous Equality
	Automatically Generated Constructions
	Universe Levels

	Induction and Recursion
	Pattern Matching
	Structural Recursion and Induction
	Dependent Pattern-Matching
	Variations on Pattern Matching
	Inaccessible Terms
	Match Expressions
	Other Examples
	Well-Founded Recursion

	Building Theories and Proofs
	More on Coercions
	More on Implicit Arguments
	Elaboration and Unification
	Reducible Definitions
	Helping the Elaborator
	Sections
	More on Namespaces

	Type Classes
	Type Classes and Instances
	Chaining Instances
	Decidable Propositions
	Overloading with Type Classes
	Managing Type Class Inference
	Instances in Sections
	Bounded Quantification

	Structures and Records
	Declaring Structures
	Objects
	Inheritance
	Structures as Classes

	Tactic-Style Proofs
	Entering the Tactic Mode
	Basic Tactics
	Structuring Tactic Proofs
	Cases and Pattern Matching
	The Rewrite Tactic

	Axioms and Computation
	Historical and Philosophical Context
	Propositional Extensionality
	Function Extensionality
	Quotients
	Choice Axioms
	Excluded Middle
	Propositional Decidability
	Constructive Choice
	Tracking used axioms

	More Tactics
	Induction
	Other Tactics
	Combinators

	Quick Reference
	Displaying Information
	Common Options
	Attributes
	Proof Elements
	Sectioning Mechanisms
	Tactics
	Emacs Lean-mode commands
	Unicode Symbols

	Bibliography

