
Theorem Proving in Lean
Release 3.23.0

Jeremy Avigad, Leonardo de Moura, and Soonho Kong

Oct 21, 2024

CONTENTS

1 Introduction 1
1.1 Computers and Theorem Proving . 1
1.2 About Lean . 2
1.3 About this Book . 2
1.4 Acknowledgments . 3

2 Dependent Type Theory 5
2.1 Simple Type Theory . 5
2.2 Types as Objects . 7
2.3 Function Abstraction and Evaluation . 8
2.4 Introducing Definitions . 11
2.5 Local Definitions . 12
2.6 Variables and Sections . 13
2.7 Namespaces . 15
2.8 Dependent Types . 17
2.9 Implicit Arguments . 19
2.10 Exercises . 21

3 Propositions and Proofs 23
3.1 Propositions as Types . 23
3.2 Working with Propositions as Types . 25
3.3 Propositional Logic . 27
3.4 Introducing Auxiliary Subgoals . 31
3.5 Classical Logic . 32
3.6 Examples of Propositional Validities . 33
3.7 Exercises . 35

4 Quantifiers and Equality 37
4.1 The Universal Quantifier . 37
4.2 Equality . 39
4.3 Calculational Proofs . 42
4.4 The Existential Quantifier . 44
4.5 More on the Proof Language . 48
4.6 Exercises . 49

5 Tactics 53
5.1 Entering Tactic Mode . 53
5.2 Basic Tactics . 56
5.3 More Tactics . 60
5.4 Structuring Tactic Proofs . 63

i

5.5 Tactic Combinators . 68
5.6 Rewriting . 71
5.7 Using the Simplifier . 73
5.8 Exercises . 78

6 Interacting with Lean 79
6.1 Importing Files . 79
6.2 More on Sections . 79
6.3 More on Namespaces . 82
6.4 Attributes . 84
6.5 More on Implicit Arguments . 85
6.6 Notation . 87
6.7 Coercions . 89
6.8 Displaying Information . 89
6.9 Setting Options . 91
6.10 Elaboration Hints . 91
6.11 Using the Library . 92

7 Inductive Types 95
7.1 Enumerated Types . 96
7.2 Constructors with Arguments . 98
7.3 Inductively Defined Propositions . 101
7.4 Defining the Natural Numbers . 102
7.5 Other Recursive Data Types . 105
7.6 Tactics for Inductive Types . 107
7.7 Inductive Families . 112
7.8 Axiomatic Details . 113
7.9 Mutual and Nested Inductive Types . 114
7.10 Exercises . 115

8 Induction and Recursion 117
8.1 Pattern Matching . 117
8.2 Wildcards and Overlapping Patterns . 120
8.3 Structural Recursion and Induction . 122
8.4 Well-Founded Recursion and Induction . 124
8.5 Mutual Recursion . 127
8.6 Dependent Pattern Matching . 128
8.7 Inaccessible Terms . 130
8.8 Match Expressions . 131
8.9 Exercises . 133

9 Structures and Records 135
9.1 Declaring Structures . 135
9.2 Objects . 138
9.3 Inheritance . 139

10 Type Classes 141
10.1 Type Classes and Instances . 141
10.2 Chaining Instances . 143
10.3 Inferring Notation . 143
10.4 Decidable Propositions . 144
10.5 Managing Type Class Inference . 146
10.6 Coercions using Type Classes . 148

11 Axioms and Computation 153

ii

11.1 Historical and Philosophical Context . 154
11.2 Propositional Extensionality . 154
11.3 Function Extensionality . 155
11.4 Quotients . 157
11.5 Choice . 162
11.6 The Law of the Excluded Middle . 163

Bibliography 167

iii

iv

CHAPTER

ONE

INTRODUCTION

1.1 Computers and Theorem Proving
Formal verification involves the use of logical and computational methods to establish claims that are expressed in precise
mathematical terms. These can include ordinary mathematical theorems, as well as claims that pieces of hardware or
software, network protocols, and mechanical and hybrid systems meet their specifications. In practice, there is not a
sharp distinction between verifying a piece of mathematics and verifying the correctness of a system: formal verification
requires describing hardware and software systems in mathematical terms, at which point establishing claims as to their
correctness becomes a form of theorem proving. Conversely, the proof of a mathematical theorem may require a lengthy
computation, in which case verifying the truth of the theorem requires verifying that the computation does what it is
supposed to do.
The gold standard for supporting a mathematical claim is to provide a proof, and twentieth-century developments in logic
show most if not all conventional proof methods can be reduced to a small set of axioms and rules in any of a number of
foundational systems. With this reduction, there are two ways that a computer can help establish a claim: it can help find
a proof in the first place, and it can help verify that a purported proof is correct.
Automated theorem proving focuses on the “finding” aspect. Resolution theorem provers, tableau theorem provers, fast
satisfiability solvers, and so on provide means of establishing the validity of formulas in propositional and first-order logic.
Other systems provide search procedures and decision procedures for specific languages and domains, such as linear or
nonlinear expressions over the integers or the real numbers. Architectures like SMT (“satisfiability modulo theories”)
combine domain-general search methods with domain-specific procedures. Computer algebra systems and specialized
mathematical software packages provide means of carrying out mathematical computations, establishing mathematical
bounds, or finding mathematical objects. A calculation can be viewed as a proof as well, and these systems, too, help
establish mathematical claims.
Automated reasoning systems strive for power and efficiency, often at the expense of guaranteed soundness. Such systems
can have bugs, and it can be difficult to ensure that the results they deliver are correct. In contrast, interactive theorem
proving focuses on the “verification” aspect of theorem proving, requiring that every claim is supported by a proof in a
suitable axiomatic foundation. This sets a very high standard: every rule of inference and every step of a calculation has to
be justified by appealing to prior definitions and theorems, all the way down to basic axioms and rules. In fact, most such
systems provide fully elaborated “proof objects” that can be communicated to other systems and checked independently.
Constructing such proofs typically requires much more input and interaction from users, but it allows us to obtain deeper
and more complex proofs.
The Lean Theorem Prover aims to bridge the gap between interactive and automated theorem proving, by situating auto-
mated tools and methods in a framework that supports user interaction and the construction of fully specified axiomatic
proofs. The goal is to support both mathematical reasoning and reasoning about complex systems, and to verify claims
in both domains.
Lean’s underlying logic has a computational interpretation, and Lean can be viewed equally well as a programming lan-
guage. More to the point, it can be viewed as a system for writing programs with a precise semantics, as well as reasoning
about the functions that the programs compute. Lean also has mechanisms to serve as its ownmetaprogramming language,
which means that one can implement automation and extend the functionality of Lean using Lean itself. These aspects of

1

Theorem Proving in Lean, Release 3.23.0

Lean are explored in a companion tutorial to this one, Programming in Lean, though computational aspects of the system
will make an appearance here.

1.2 About Lean
The Lean project was launched by Leonardo de Moura at Microsoft Research Redmond in 2013. It is an ongoing, long-
term effort, and much of the potential for automation will be realized only gradually over time. Lean is released under
the Apache 2.0 license, a permissive open source license that permits others to use and extend the code and mathematical
libraries freely.
There are currently two ways to use Lean. The first is to run it from the web: a Javascript version of Lean, a standard
library of definitions and theorems, and an editor are actually downloaded to your browser and run there. This provides
a quick and convenient way to begin experimenting with the system.
The second way to use Lean is to install and run it natively on your computer. The native version is much faster than the
web version, and is more flexible in other ways, too. Special modes in Visual Studio Code (VS Code for short) and Emacs
offer powerful support for writing and debugging proofs, and is much better suited for serious use. The source code, and
instructions for building Lean, are available at https://github.com/leanprover/lean/.
This tutorial describes an old version of Lean, known as Lean 3. The current version of Lean is Lean 4 and up-to-date
documentation resources can be found at https://lean-lang.org/documentation/. A prior version, Lean 2, had special
support for homotopy type theory. You can find Lean 2 and the HoTT library at https://github.com/leanprover/lean2/.
The tutorial for that version of Lean is at https://leanprover.github.io/tutorial/.

1.3 About this Book
This book is designed to teach you to develop and verify proofs in Lean. Much of the background information you will
need in order to do this is not specific to Lean at all. To start with, we will explain the logical system that Lean is based
on, a version of dependent type theory that is powerful enough to prove almost any conventional mathematical theorem,
and expressive enough to do it in a natural way. More specifically, Lean is based on a version of a system known as the
Calculus of Constructions [CoHu88] with inductive types [Dybj94]. We will explain not only how to define mathematical
objects and express mathematical assertions in dependent type theory, but also how to use it as a language for writing
proofs.
Because fully detailed axiomatic proofs are so complicated, the challenge of theorem proving is to have the computer fill
in as many of the details as possible. We will describe various methods to support this in dependent type theory. For
example, we will discuss term rewriting, and Lean’s automated methods for simplifying terms and expressions automati-
cally. Similarly, we will discuss methods of elaboration and type inference, which can be used to support flexible forms
of algebraic reasoning.
Finally, of course, we will discuss features that are specific to Lean, including the language with which you can commu-
nicate with the system, and the mechanisms Lean offers for managing complex theories and data.
Throughout the text you will find examples of Lean code like the one below:

theorem and_commutative (p q : Prop) : p ∧ q → q ∧ p :=

assume hpq : p ∧ q,

have hp : p, from and.left hpq,

have hq : q, from and.right hpq,

show q ∧ p, from and.intro hq hp

If you are reading the book online, you will see a button that reads “try it!” Pressing the button opens up a tab with a
Lean editor, and copies the example with enough surrounding context to make the example compile correctly. You can
type things into the editor and modify the examples, and Lean will check the results and provide feedback continuously
as you type. We recommend running the examples and experimenting with the code on your own as you work through
the chapters that follow.

2 Chapter 1. Introduction

https://leanprover.github.io/programming_in_lean
https://github.com/leanprover/lean/
https://lean-lang.org/documentation/
https://github.com/leanprover/lean2/
https://leanprover.github.io/tutorial/

Theorem Proving in Lean, Release 3.23.0

1.4 Acknowledgments
This tutorial is an open access project maintained on Github. Many people have contributed to the effort, providing
corrections, suggestions, examples, and text. We are grateful to Ulrik Buchholz, Kevin Buzzard, Mario Carneiro, Nathan
Carter, Eduardo Cavazos, Amine Chaieb, Joe Corneli, William DeMeo, Marcus Klaas de Vries, Ben Dyer, Gabriel
Ebner, Anthony Hart, Simon Hudon, Sean Leather, Assia Mahboubi, Gihan Marasingha, Patrick Massot, Christopher
John Mazey, Sebastian Ullrich, Floris van Doorn, Daniel Velleman, and Théo Zimmerman for their contributions, and
we apologize to those whose names we have inadvertently omitted.

1.4. Acknowledgments 3

Theorem Proving in Lean, Release 3.23.0

4 Chapter 1. Introduction

CHAPTER

TWO

DEPENDENT TYPE THEORY

Dependent type theory is a powerful and expressive language, allowing us to express complex mathematical assertions,
write complex hardware and software specifications, and reason about both of these in a natural and uniform way. Lean
is based on a version of dependent type theory known as the Calculus of Constructions, with a countable hierarchy of
non-cumulative universes and inductive types. By the end of this chapter, you will understand much of what this means.

2.1 Simple Type Theory
As a foundation for mathematics, set theory has a simple ontology that is rather appealing. Everything is a set, including
numbers, functions, triangles, stochastic processes, and Riemannian manifolds. It is a remarkable fact that one can con-
struct a rich mathematical universe from a small number of axioms that describe a few basic set-theoretic constructions.
But for many purposes, including formal theorem proving, it is better to have an infrastructure that helps us manage and
keep track of the various kinds of mathematical objects we are working with. “Type theory” gets its name from the fact
that every expression has an associated type. For example, in a given context, x + 0 may denote a natural number and f
may denote a function on the natural numbers.
Here are some examples of how we can declare objects in Lean and check their types.

/- declare some constants -/

constant m : nat -- m is a natural number

constant n : nat

constants b1 b2 : bool -- declare two constants at once

/- check their types -/

#check m -- output: nat

#check n

#check n + 0 -- nat

#check m * (n + 0) -- nat

#check b1 -- bool

#check b1 && b2 -- "&&" is boolean and

#check b1 || b2 -- boolean or

#check tt -- boolean "true"

-- Try some examples of your own.

Any text between the /- and -/ constitutes a comment that is ignored by Lean. Similarly, two dashes indicate that the
rest of the line contains a comment that is also ignored. Comment blocks can be nested, making it possible to “comment
out” chunks of code, just as in many programming languages.

5

Theorem Proving in Lean, Release 3.23.0

The constant and constants commands introduce new constant symbols into the working environment. The #check
command asks Lean to report their types; in Lean, commands that query the system for information typically begin with
the hash symbol. You should try declaring some constants and type checking some expressions on your own. Declaring
new objects in this way is a good way to experiment with the system, but it is ultimately undesirable: Lean is a foundational
system, which is to say, it provides us with powerful mechanisms to define all the mathematical objects we need, rather
than simply postulating them. We will explore these mechanisms in the chapters to come.
What makes simple type theory powerful is that one can build new types out of others. For example, if α and β are types,
α → β denotes the type of functions from α to β, and α × β denotes the cartesian product, that is, the type of ordered
pairs consisting of an element of α paired with an element of β.

constants m n : nat

constant f : nat → nat -- type the arrow as "\to" or "\r"

constant f' : nat -> nat -- alternative ASCII notation

constant f'' : N → N -- alternative notation for nat

constant p : nat × nat -- type the product as "\times"

constant q : prod nat nat -- alternative notation

constant g : nat → nat → nat

constant g' : nat → (nat → nat) -- has the same type as g!

constant h : nat × nat → nat

constant F : (nat → nat) → nat -- a "functional"

#check f -- N → N
#check f n -- N
#check g m n -- N
#check g m -- N → N
#check (m, n) -- N × N
#check p.1 -- N
#check p.2 -- N
#check (m, n).1 -- N
#check (p.1, n) -- N × N
#check F f -- N

Once again, you should try some examples on your own.
Let us dispense with some basic syntax. You can enter the unicode arrow→ by typing \to or \r. You can also use the
ASCII alternative ->, so that the expression nat -> nat and nat → nat mean the same thing. Both expressions
denote the type of functions that take a natural number as input and return a natural number as output. The symbol N is
alternative unicode notation for nat; you can enter it by typing \nat. The unicode symbol × for the cartesian product is
entered \times. We will generally use lower-case greek letters like α, β, and γ to range over types. You can enter these
particular ones with \a, \b, and \g.
There are a few more things to notice here. First, the application of a function f to a value x is denoted f x. Second,
when writing type expressions, arrows associate to the right; for example, the type of g is nat → (nat → nat).
Thus we can view g as a function that takes natural numbers and returns another function that takes a natural number
and returns a natural number. In type theory, this is generally more convenient than writing g as a function that takes a
pair of natural numbers as input, and returns a natural number as output. For example, it allows us to “partially apply”
the function g. The example above shows that g m has type nat → nat, that is, the function that “waits” for a second
argument, n, and then returns g m n. Taking a function h of type nat × nat → nat and “redefining” it to look like
g is a process known as currying, something we will come back to below.
By now you may also have guessed that, in Lean, (m, n) denotes the ordered pair of m and n, and if p is a pair, p.1 and
p.2 denote the two projections.

6 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

2.2 Types as Objects
One way in which Lean’s dependent type theory extends simple type theory is that types themselves — entities like nat
and bool— are first-class citizens, which is to say that they themselves are objects of study. For that to be the case, each
of them also has to have a type.

#check nat -- Type

#check bool -- Type

#check nat → bool -- Type

#check nat × bool -- Type

#check nat → nat -- ...

#check nat × nat → nat

#check nat → nat → nat

#check nat → (nat → nat)

#check nat → nat → bool

#check (nat → nat) → nat

We see that each one of the expressions above is an object of type Type. We can also declare new constants and con-
structors for types:

constants α β : Type

constant F : Type → Type

constant G : Type → Type → Type

#check α -- Type

#check F α -- Type

#check F nat -- Type

#check G α -- Type → Type

#check G α β -- Type

#check G α nat -- Type

Indeed, we have already seen an example of a function of type Type → Type → Type, namely, the Cartesian product.

constants α β : Type

#check prod α β -- Type

#check prod nat nat -- Type

Here is another example: given any type α, the type list α denotes the type of lists of elements of type α.

constant α : Type

#check list α -- Type

#check list nat -- Type

For those more comfortable with set-theoretic foundations, it may be helpful to think of a type as nothing more than a
set, in which case, the elements of the type are just the elements of the set. Given that every expression in Lean has a
type, it is natural to ask: what type does Type itself have?

#check Type -- Type 1

We have actually come up against one of the most subtle aspects of Lean’s typing system. Lean’s underlying foundation
has an infinite hierarchy of types:

2.2. Types as Objects 7

Theorem Proving in Lean, Release 3.23.0

#check Type -- Type 1

#check Type 1 -- Type 2

#check Type 2 -- Type 3

#check Type 3 -- Type 4

#check Type 4 -- Type 5

Think of Type 0 as a universe of “small” or “ordinary” types. Type 1 is then a larger universe of types, which contains
Type 0 as an element, and Type 2 is an even larger universe of types, which contains Type 1 as an element. The list
is indefinite, so that there is a Type n for every natural number n. Type is an abbreviation for Type 0:

#check Type

#check Type 0

There is also another type, Prop, which has special properties.

#check Prop -- Type

We will discuss Prop in the next chapter.
We want some operations, however, to be polymorphic over type universes. For example, list α should make sense for
any type α, no matter which type universe α lives in. This explains the type annotation of the function list:

#check list -- Type u_1 → Type u_1

Here u_1 is a variable ranging over type levels. The output of the #check command means that whenever α has type
Type n, list α also has type Type n. The function prod is similarly polymorphic:

#check prod -- Type u_1 → Type u_2 → Type (max u_1 u_2)

To define polymorphic constants and variables, Lean allows us to declare universe variables explicitly:

universe u

constant α : Type u

#check α

Equivalently, we can write Type _ or Type* to avoid giving the arbitrary universe a name:

constant α : Type _

#check α

constant β : Type*

#check β

Throughout this book, we will generally use Type* in examples when we want type constructions to have as much
generality as possible. Wewill come to learn that the ability to treat type constructors as instances of ordinarymathematical
functions is a powerful feature of dependent type theory.

2.3 Function Abstraction and Evaluation
We have seen that if we have m n : nat, then we have (m, n) : nat × nat. This gives us a way of creating pairs
of natural numbers. Conversely, if we have p : nat × nat, then we have fst p : nat and snd p : nat. This
gives us a way of “using” a pair, by extracting its two components.
We already know how to “use” a function f : α → β, namely, we can apply it to an element a : α to obtain f a :

β. But how do we create a function from another expression?

8 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

The companion to application is a process known as “abstraction,” or “lambda abstraction.” Suppose that by temporarily
postulating a variable x : α we can construct an expression t : β. Then the expression fun x : α, t, or,
equivalently, λ x : α, t, is an object of type α → β. Think of this as the function from α to β which maps any
value x to the value t, which depends on x. For example, in mathematics it is common to say “let f be the function which
maps any natural number x to x + 5.” The expression λ x : nat, x + 5 is just a symbolic representation of the
right-hand side of this assignment.

#check fun x : nat, x + 5

#check λ x : nat, x + 5

Here are some more abstract examples:

constants α β : Type

constants a1 a2 : α
constants b1 b2 : β

constant f : α → α
constant g : α → β
constant h : α → β → α
constant p : α → α → bool

#check fun x : α, f x -- α → α
#check λ x : α, f x -- α → α
#check λ x : α, f (f x) -- α → α
#check λ x : α, h x b1 -- α → α
#check λ y : β, h a1 y -- β → α
#check λ x : α, p (f (f x)) (h (f a1) b2) -- α → bool

#check λ x : α, λ y : β, h (f x) y -- α → β → α
#check λ (x : α) (y : β), h (f x) y -- α → β → α
#check λ x y, h (f x) y -- α → β → α

Lean interprets the final three examples as the same expression; in the last expression, Lean infers the type of x and y
from the types of f and h.
Try writing some expressions on your own. Some mathematically common examples of operations of functions can be
described in terms of lambda abstraction:

constants α β γ : Type

constant f : α → β
constant g : β → γ
constant b : β

#check λ x : α, x -- α → α
#check λ x : α, b -- α → β
#check λ x : α, g (f x) -- α → γ
#check λ x, g (f x)

Think about what these expressions mean. The expression λ x : α, x denotes the identity function on α, the expression
λ x : α, b denotes the constant function that always returns b, and λ x : α, g (f x), denotes the composition
of f and g. We can, in general, leave off the type annotations on the variable and let Lean infer it for us. So, for example,
we can write λ x, g (f x) instead of λ x : α, g (f x).
We can abstract over any of the constants in the previous definitions:

2.3. Function Abstraction and Evaluation 9

Theorem Proving in Lean, Release 3.23.0

#check λ b : β, λ x : α, x -- β → α → α
#check λ (b : β) (x : α), x -- β → α → α
#check λ (g : β → γ) (f : α → β) (x : α), g (f x)

-- (β → γ) → (α → β) → α → γ

Lean lets us combine lambdas, so the second example is equivalent to the first. We can even abstract over the type:

#check λ (α β : Type*) (b : β) (x : α), x

#check λ (α β γ : Type*) (g : β → γ) (f : α → β) (x : α), g (f x)

The last expression, for example, denotes the function that takes three types, α, β, and γ, and two functions, g : β
→ γ and f : α → β, and returns the composition of g and f. (Making sense of the type of this function requires
an understanding of dependent products, which we will explain below.) Within a lambda expression λ x : α, t, the
variable x is a “bound variable”: it is really a placeholder, whose “scope” does not extend beyond t. For example, the
variable b in the expression λ (b : β) (x : α), x has nothing to do with the constant b declared earlier. In fact,
the expression denotes the same function as λ (u : β) (z : α), z. Formally, the expressions that are the same
up to a renaming of bound variables are called alpha equivalent, and are considered “the same.” Lean recognizes this
equivalence.
Notice that applying a term t : α → β to a term s : α yields an expression t s : β. Returning to the previous
example and renaming bound variables for clarity, notice the types of the following expressions:

constants α β γ : Type

constant f : α → β
constant g : β → γ
constant h : α → α
constants (a : α) (b : β)

#check (λ x : α, x) a -- α
#check (λ x : α, b) a -- β
#check (λ x : α, b) (h a) -- β
#check (λ x : α, g (f x)) (h (h a)) -- γ

#check (λ (v : β → γ) (u : α → β) x, v (u x)) g f a -- γ

#check (λ (Q R S : Type*) (v : R → S) (u : Q → R) (x : Q),

v (u x)) α β γ g f a -- γ

As expected, the expression (λ x : α, x) a has type α. In fact, more should be true: applying the expression (λ x

: α, x) to a should “return” the value a. And, indeed, it does:

constants α β γ : Type

constant f : α → β
constant g : β → γ
constant h : α → α
constants (a : α) (b : β)

#reduce (λ x : α, x) a -- a

#reduce (λ x : α, b) a -- b

#reduce (λ x : α, b) (h a) -- b

#reduce (λ x : α, g (f x)) a -- g (f a)

#reduce (λ (v : β → γ) (u : α → β) x, v (u x)) g f a -- g (f a)

(continues on next page)

10 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
#reduce (λ (Q R S : Type*) (v : R → S) (u : Q → R) (x : Q),

v (u x)) α β γ g f a -- g (f a)

The command #reduce tells Lean to evaluate an expression by reducing it to normal form, which is to say, carrying out
all the computational reductions that are sanctioned by the underlying logic. The process of simplifying an expression (λ
x, t)s to t[s/x] – that is, t with s substituted for the variable x – is known as beta reduction, and two terms that beta
reduce to a common term are called beta equivalent. But the #reduce command carries out other forms of reduction as
well:

constants m n : nat

constant b : bool

#print "reducing pairs"

#reduce (m, n).1 -- m

#reduce (m, n).2 -- n

#print "reducing boolean expressions"

#reduce tt && ff -- ff

#reduce ff && b -- ff

#reduce b && ff -- bool.rec ff ff b

#print "reducing arithmetic expressions"

#reduce n + 0 -- n

#reduce n + 2 -- nat.succ (nat.succ n)

#reduce 2 + 3 -- 5

In a later chapter, we will explain how these terms are evaluated. For now, we only wish to emphasize that this is an
important feature of dependent type theory: every term has a computational behavior, and supports a notion of reduction,
or normalization. In principle, two terms that reduce to the same value are called definitionally equal. They are considered
“the same” by the underlying logical framework, and Lean does its best to recognize and support these identifications.
It is this computational behavior that makes it possible to use Lean as a programming language as well. Indeed, Lean
extracts bytecode from terms in a computationally pure fragment of the logical framework, and can evaluate them quite
efficiently:

#eval 12345 * 54321

In contrast, the #reduce command relies on Lean’s trusted kernel, the part of Lean that is responsible for checking and
verifying the correctness of expressions and proofs. As such, the #reduce command is more trustworthy, but far less
efficient. We will have more to say about #eval in Chapter 11, and it will play a central role in Programming in Lean.
In this tutorial, however, we will generally rely on #reduce instead.

2.4 Introducing Definitions
As we have noted above, declaring constants in the Lean environment is a good way to postulate new objects to experiment
with, but most of the time what we really want to do is define objects in Lean and prove things about them. The def
command provides one important way of defining new objects.

def foo : (N → N) → N := λ f, f 0

#check foo -- (N → N) → N
#print foo -- λ (f : N → N), f 0

2.4. Introducing Definitions 11

https://leanprover.github.io/programming_in_lean

Theorem Proving in Lean, Release 3.23.0

We can omit the type when Lean has enough information to infer it:

def foo' := λ f : N → N, f 0

The general form of a definition is def foo : α := bar. Lean can usually infer the type α, but it is often a good idea
to write it explicitly. This clarifies your intention, and Lean will flag an error if the right-hand side of the definition does
not have the right type.
Lean also allows us to use an alternative format that puts the abstracted variables before the colon and omits the lambda:

def double (x : N) : N := x + x

#print double

#check double 3

#reduce double 3 -- 6

def square (x : N) := x * x

#print square

#check square 3

#reduce square 3 -- 9

def do_twice (f : N → N) (x : N) : N := f (f x)

#reduce do_twice double 2 -- 8

These definitions are equivalent to the following:

def double : N → N := λ x, x + x

def square : N → N := λ x, x * x

def do_twice : (N → N) → N → N := λ f x, f (f x)

We can even use this approach to specify arguments that are types:

def compose (α β γ : Type*) (g : β → γ) (f : α → β) (x : α) :

γ :=

g (f x)

As an exercise, we encourage you to use do_twice and double to define functions that quadruple their input, and
multiply the input by 8. As a further exercise, we encourage you to try defining a function Do_Twice : ((N → N)
→ (N → N)) → (N → N) → (N → N) which applies its argument twice, so that Do_Twice do_twice is a
function that applies its input four times. Then evaluate Do_Twice do_twice double 2.
Above, we discussed the process of “currying” a function, that is, taking a function f (a, b) that takes an ordered pair
as an argument, and recasting it as a function f' a b that takes two arguments successively. As another exercise, we
encourage you to complete the following definitions, which “curry” and “uncurry” a function.

def curry (α β γ : Type*) (f : α × β → γ) : α → β → γ := sorry

def uncurry (α β γ : Type*) (f : α → β → γ) : α × β → γ := sorry

2.5 Local Definitions
Lean also allows you to introduce “local” definitions using the let construct. The expression let a := t1 in t2 is
definitionally equal to the result of replacing every occurrence of a in t2 by t1.

12 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

#check let y := 2 + 2 in y * y -- N
#reduce let y := 2 + 2 in y * y -- 16

def t (x : N) : N :=

let y := x + x in y * y

#reduce t 2 -- 16

Here, t is definitionally equal to the term (x + x) * (x + x). You can combine multiple assignments in a single let
statement:

#check let y := 2 + 2, z := y + y in z * z -- N
#reduce let y := 2 + 2, z := y + y in z * z -- 64

Notice that the meaning of the expression let a := t1 in t2 is very similar to the meaning of (λ a, t2) t1, but
the two are not the same. In the first expression, you should think of every instance of a in t2 as a syntactic abbreviation
for t1. In the second expression, a is a variable, and the expression λ a, t2 has to make sense independently of the
value of a. The let construct is a stronger means of abbreviation, and there are expressions of the form let a := t1

in t2 that cannot be expressed as (λ a, t2) t1. As an exercise, try to understand why the definition of foo below
type checks, but the definition of bar does not.

def foo := let a := nat in λ x : a, x + 2

/-

def bar := (λ a, λ x : a, x + 2) nat

-/

2.6 Variables and Sections
This is a good place to introduce some organizational features of Lean that are not a part of the axiomatic framework per
se, but make it possible to work in the framework more efficiently.
We have seen that the constant command allows us to declare new objects, which then become part of the global
context. Declaring new objects in this way is somewhat crass. Lean enables us to define all of the mathematical objects
we need, and declaring new objects willy-nilly is therefore somewhat lazy. In the words of Bertrand Russell, it has all the
advantages of theft over honest toil. We will see in the next chapter that it is also somewhat dangerous: declaring a new
constant is tantamount to declaring an axiomatic extension of our foundational system, and may result in inconsistency.
So far, in this tutorial, we have used the constant command to create “arbitrary” objects to work with in our examples.
For example, we have declared types α, β, and γ to populate our context. This can be avoided, using implicit or explicit
lambda abstraction in our definitions to declare such objects “locally”:

def compose (α β γ : Type*) (g : β → γ) (f : α → β) (x : α) :

γ := g (f x)

def do_twice (α : Type*) (h : α → α) (x : α) : α := h (h x)

def do_thrice (α : Type*) (h : α → α) (x : α) : α := h (h (h x))

Repeating declarations in this way can be tedious, however. Lean provides us with the variable and variables

commands to make such declarations look global:

2.6. Variables and Sections 13

Theorem Proving in Lean, Release 3.23.0

variables (α β γ : Type*)

def compose (g : β → γ) (f : α → β) (x : α) : γ := g (f x)

def do_twice (h : α → α) (x : α) : α := h (h x)

def do_thrice (h : α → α) (x : α) : α := h (h (h x))

We can declare variables of any type, not just Type itself:

variables (α β γ : Type*)

variables (g : β → γ) (f : α → β) (h : α → α)
variable x : α

def compose := g (f x)

def do_twice := h (h x)

def do_thrice := h (h (h x))

#print compose

#print do_twice

#print do_thrice

Printing them out shows that all three groups of definitions have exactly the same effect.
The variable and variables commands look like the constant and constants commands we have used above,
but there is an important difference. Rather than creating permanent entities, the former commands simply instruct Lean
to insert the declared variables as bound variables in definitions that refer to them. Lean is smart enough to figure out
which variables are used explicitly or implicitly in a definition. We can therefore proceed as though α, β, γ, g, f, h, and
x are fixed objects when we write our definitions, and let Lean abstract the definitions for us automatically.
When declared in this way, a variable stays in scope until the end of the file we are working on, and we cannot declare
another variable with the same name. Sometimes, however, it is useful to limit the scope of a variable. For that purpose,
Lean provides the notion of a section:

section useful

variables (α β γ : Type*)

variables (g : β → γ) (f : α → β) (h : α → α)
variable x : α

def compose := g (f x)

def do_twice := h (h x)

def do_thrice := h (h (h x))

end useful

When the section is closed, the variables go out of scope, and become nothing more than a distant memory.
You do not have to indent the lines within a section, since Lean treats any string of returns, spaces, and tabs equivalently
as whitespace. Nor do you have to name a section, which is to say, you can use an anonymous section / end pair. If
you do name a section, however, you have to close it using the same name. Sections can also be nested, which allows you
to declare new variables incrementally.
We will see in Chapter 6 that, as a scoping mechanism, sections govern more than just variables; other commands have
effects that are only operant in the current section. Similarly, if we use the open command inside a section, it only remains
in effect until that section is closed.

14 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

2.7 Namespaces
Lean provides us with the ability to group definitions into nested, hierarchical namespaces:

namespace foo

def a : N := 5

def f (x : N) : N := x + 7

def fa : N := f a

def ffa : N := f (f a)

#print "inside foo"

#check a

#check f

#check fa

#check ffa

#check foo.fa

end foo

#print "outside the namespace"

-- #check a -- error

-- #check f -- error

#check foo.a

#check foo.f

#check foo.fa

#check foo.ffa

open foo

#print "opened foo"

#check a

#check f

#check fa

#check foo.fa

When we declare that we are working in the namespace foo, every identifier we declare has a full name with prefix
“foo.” Within the namespace, we can refer to identifiers by their shorter names, but once we end the namespace, we
have to use the longer names.
The open command brings the shorter names into the current context. Often, when we import a theory file, we will want
to open one or more of the namespaces it contains, to have access to the short identifiers. But sometimes we will want
to leave this information hidden, for example, when they conflict with identifiers in another namespace we want to use.
Thus namespaces give us a way to manage our working environment.
For example, Lean groups definitions and theorems involving lists into a namespace list.

#check list.nil

#check list.cons

#check list.append

We will discuss their types, below. The command open list allows us to use the shorter names:

2.7. Namespaces 15

Theorem Proving in Lean, Release 3.23.0

open list

#check nil

#check cons

#check append

Like sections, namespaces can be nested:

namespace foo

def a : N := 5

def f (x : N) : N := x + 7

def fa : N := f a

namespace bar

def ffa : N := f (f a)

#check fa

#check ffa

end bar

#check fa

#check bar.ffa

end foo

#check foo.fa

#check foo.bar.ffa

open foo

#check fa

#check bar.ffa

Namespaces that have been closed can later be reopened, even in another file:

namespace foo

def a : N := 5

def f (x : N) : N := x + 7

def fa : N := f a

end foo

#check foo.a

#check foo.f

namespace foo

def ffa : N := f (f a)

end foo

Like sections, nested namespaces have to be closed in the order they are opened. Also, a namespace cannot be declared
within a section; namespaces have to live on the outer levels.
Namespaces and sections serve different purposes: namespaces organize data and sections declare variables for insertion
in theorems. In many respects, however, a namespace ... end block behaves the same as a section ... end block.

16 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

In particular, if you use the variable command within a namespace, its scope is limited to the namespace. Similarly,
if you use an open command within a namespace, its effects disappear when the namespace is closed.

2.8 Dependent Types
You have now seen one way of defining functions and objects in Lean, and we will gradually introduce you to many more.
But an important goal in Lean is to prove things about the objects we define, and the next chapter will introduce you
to Lean’s mechanisms for stating theorems and constructing proofs. Meanwhile, let us remain on the topic of defining
objects in dependent type theory for just a moment longer. In this section, we will explain what makes dependent type
theory dependent, and why dependent types are useful.
The short explanation is that what makes dependent type theory dependent is that types can depend on parameters. You
have already seen a nice example of this: the type list α depends on the argument α, and this dependence is what
distinguishes list N and list bool. For another example, consider the type vec α n, the type of vectors of
elements of α of length n. This type depends on two parameters: the type α : Type of the elements in the vector and
the length n : N.
Suppose we wish to write a function cons which inserts a new element at the head of a list. What type should cons
have? Such a function is polymorphic: we expect the cons function for N, bool, or an arbitrary type α to behave the
same way. So it makes sense to take the type to be the first argument to cons, so that for any type, α, cons α is the
insertion function for lists of type α. In other words, for every α, cons α is the function that takes an element a : α
and a list l : list α, and returns a new list, so we have cons α a l : list α.
It is clear that cons α should have type α → list α → list α. But what type should cons have? A first guess
might be Type → α → list α → list α, but, on reflection, this does not make sense: the α in this expression
does not refer to anything, whereas it should refer to the argument of type Type. In other words, assuming α : Type is
the first argument to the function, the type of the next two elements are α and list α. These types vary depending on
the first argument, α.
This is an instance of a Pi type, or dependent function type. Given α : Type and β : α → Type, think of β as a
family of types over α, that is, a type β a for each a : α. In that case, the type Π x : α, β x denotes the type
of functions f with the property that, for each a : α, f a is an element of β a. In other words, the type of the value
returned by f depends on its input.
Notice that Π x : α, β makes sense for any expression β : Type. When the value of β depends on x (as does,
for example, the expression β x in the previous paragraph), Π x : α, β denotes a dependent function type. When
β doesn’t depend on x, Π x : α, β is no different from the type α → β. Indeed, in dependent type theory (and in
Lean), the Pi construction is fundamental, and α → β is just notation for Π x : α, β when β does not depend on x.
Returning to the example of lists, we can model some basic list operations as follows. We use namespace hidden to
avoid a naming conflict with the list type defined in the standard library.

namespace hidden

universe u

constant list : Type u → Type u

constant cons : Π α : Type u, α → list α → list α
constant nil : Π α : Type u, list α
constant head : Π α : Type u, list α → α
constant tail : Π α : Type u, list α → list α
constant append : Π α : Type u, list α → list α → list α

end hidden

2.8. Dependent Types 17

Theorem Proving in Lean, Release 3.23.0

You can enter the symbol Π by typing \Pi. Here, nil is intended to denote the empty list, head and tail return
the first element of a list and the remainder, respectively. The constant append is intended to denote the function that
concatenates two lists.
We emphasize that these constant declarations are only for the purposes of illustration. The list type and all these
operations are, in fact, defined in Lean’s standard library, and are proved to have the expected properties. Moreover, as
the next example shows, the types indicated above are essentially the types of the objects that are defined in the library.
(We will explain the @ symbol and the difference between the round and curly brackets momentarily.)

open list

#check list -- Type u_1 → Type u_1

#check @cons -- Π {α : Type u_1}, α → list α → list α
#check @nil -- Π {α : Type u_1}, list α
#check @head -- Π {α : Type u_1} [_inst_1 : inhabited α], list α → α
#check @tail -- Π {α : Type u_1}, list α → list α
#check @append -- Π {α : Type u_1}, list α → list α → list α

There is a subtlety in the definition of head: the type α is required to have at least one element, and when passed the
empty list, the function must determine a default element of the relevant type. We will explain how this is done in Chapter
10.
Vector operations are handled similarly:

universe u

constant vec : Type u → N → Type u

namespace vec

constant empty : Π α : Type u, vec α 0

constant cons :

Π (α : Type u) (n : N), α → vec α n → vec α (n + 1)

constant append :

Π (α : Type u) (n m : N), vec α m → vec α n → vec α (n + m)

end vec

In the coming chapters, you will come across many instances of dependent types. Here we will mention just one more
important and illustrative example, the Sigma types, Σ x : α, β x, sometimes also known as dependent products.
These are, in a sense, companions to the Pi types. The type Σ x : α, β x denotes the type of pairs sigma.mk a b

where a : α and b : β a.
Just as Pi types Π x : α, β x generalize the notion of a function type α → β by allowing β to depend on α, Sigma
types Σ x : α, β x generalize the cartesian product α × β in the same way: in the expression sigma.mk a b, the
type of the second element of the pair, b : β a, depends on the first element of the pair, a : α.

variable α : Type

variable β : α → Type

variable a : α
variable b : β a

#check sigma.mk a b -- Σ (a : α), β a

#check (sigma.mk a b).1 -- α
#check (sigma.mk a b).2 -- β (sigma.fst (sigma.mk a b))

#reduce (sigma.mk a b).1 -- a

#reduce (sigma.mk a b).2 -- b

18 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

Notice that the expressions (sigma.mk a b).1 and (sigma.mk a b).2 are short for sigma.fst (sigma.mk a

b) and sigma.snd (sigma.mk a b), respectively, and that these reduce to a and b, respectively.

2.9 Implicit Arguments
Suppose we have an implementation of lists as described above.

namespace hidden

universe u

constant list : Type u → Type u

namespace list

constant cons : Π α : Type u, α → list α → list α
constant nil : Π α : Type u, list α
constant append : Π α : Type u, list α → list α → list α
end list

end hidden

Then, given a type α, some elements of α, and some lists of elements of α, we can construct new lists using the construc-
tors.

open hidden.list

variable α : Type

variable a : α
variables l1 l2 : list α

#check cons α a (nil α)
#check append α (cons α a (nil α)) l1

#check append α (append α (cons α a (nil α)) l1) l2

Because the constructors are polymorphic over types, we have to insert the type α as an argument repeatedly. But this
information is redundant: one can infer the argument α in cons α a (nil α) from the fact that the second argument,
a, has type α. One can similarly infer the argument in nil α, not from anything else in that expression, but from the
fact that it is sent as an argument to the function cons, which expects an element of type list α in that position.
This is a central feature of dependent type theory: terms carry a lot of information, and often some of that information can
be inferred from the context. In Lean, one uses an underscore, _, to specify that the system should fill in the information
automatically. This is known as an “implicit argument.”

#check cons _ a (nil _)

#check append _ (cons _ a (nil _)) l1

#check append _ (append _ (cons _ a (nil _)) l1) l2

It is still tedious, however, to type all these underscores. When a function takes an argument that can generally be inferred
from context, Lean allows us to specify that this argument should, by default, be left implicit. This is done by putting the
arguments in curly braces, as follows:

namespace list

constant cons : Π {α : Type u}, α → list α → list α
constant nil : Π {α : Type u}, list α
constant append : Π {α : Type u}, list α → list α → list α
end list

(continues on next page)

2.9. Implicit Arguments 19

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
open hidden.list

variable α : Type

variable a : α
variables l1 l2 : list α

#check cons a nil

#check append (cons a nil) l1

#check append (append (cons a nil) l1) l2

All that has changed are the braces around α : Type u in the declaration of the variables. We can also use this device
in function definitions:

universe u

def ident {α : Type u} (x : α) := x

variables α β : Type u

variables (a : α) (b : β)

#check ident -- ?M_1 → ?M_1

#check ident a -- α
#check ident b -- β

This makes the first argument to ident implicit. Notationally, this hides the specification of the type, making it look as
though ident simply takes an argument of any type. In fact, the function id is defined in the standard library in exactly
this way. We have chosen a nontraditional name here only to avoid a clash of names.
Variables can also be specified as implicit when they are declared with the variables command:

universe u

section

variable {α : Type u}

variable x : α
def ident := x

end

variables α β : Type u

variables (a : α) (b : β)

#check ident

#check ident a

#check ident b

This definition of ident here has the same effect as the one above.
Lean has very complex mechanisms for instantiating implicit arguments, and we will see that they can be used to infer
function types, predicates, and even proofs. The process of instantiating these “holes,” or “placeholders,” in a term is
often known as elaboration. The presence of implicit arguments means that at times there may be insufficient information
to fix the meaning of an expression precisely. An expression like id or list.nil is said to be polymorphic, because it
can take on different meanings in different contexts.
One can always specify the type T of an expression e by writing (e : T). This instructs Lean’s elaborator to use the
value T as the type of e when trying to resolve implicit arguments. In the second pair of examples below, this mechanism
is used to specify the desired types of the expressions id and list.nil:

20 Chapter 2. Dependent Type Theory

Theorem Proving in Lean, Release 3.23.0

#check list.nil -- list ?M1

#check id -- ?M1 → ?M1

#check (list.nil : list N) -- list N
#check (id : N → N) -- N → N

Numerals are overloaded in Lean, but when the type of a numeral cannot be inferred, Lean assumes, by default, that it is
a natural number. So the expressions in the first two #check commands below are elaborated in the same way, whereas
the third #check command interprets 2 as an integer.

#check 2 -- N
#check (2 : N) -- N
#check (2 : Z) -- Z

Sometimes, however, we may find ourselves in a situation where we have declared an argument to a function to be implicit,
but now want to provide the argument explicitly. If foo is such a function, the notation @foo denotes the same function
with all the arguments made explicit.

#check @id -- Π {α : Type u_1}, α → α
#check @id α -- α → α
#check @id β -- β → β
#check @id α a -- α
#check @id β b -- β

Notice that now the first #check command gives the type of the identifier, id, without inserting any placeholders. More-
over, the output indicates that the first argument is implicit.

2.10 Exercises
1. Define the function Do_Twice, as described in Section 2.4.
2. Define the functions curry and uncurry, as described in Section 2.4.
3. Above, we used the example vec α n for vectors of elements of type α of length n. Declare a constant vec_add

that could represent a function that adds two vectors of natural numbers of the same length, and a constant
vec_reverse that can represent a function that reverses its argument. Use implicit arguments for parameters
that can be inferred. Declare some variables and check some expressions involving the constants that you have
declared.

4. Similarly, declare a constant matrix so that matrix α m n could represent the type of m by nmatrices. Declare
some constants to represent functions on this type, such as matrix addition and multiplication, and (using vec)
multiplication of a matrix by a vector. Once again, declare some variables and check some expressions involving
the constants that you have declared.

2.10. Exercises 21

Theorem Proving in Lean, Release 3.23.0

22 Chapter 2. Dependent Type Theory

CHAPTER

THREE

PROPOSITIONS AND PROOFS

By now, you have seen some ways of defining objects and functions in Lean. In this chapter, we will begin to explain how
to write mathematical assertions and proofs in the language of dependent type theory as well.

3.1 Propositions as Types
One strategy for proving assertions about objects defined in the language of dependent type theory is to layer an assertion
language and a proof language on top of the definition language. But there is no reason to multiply languages in this way:
dependent type theory is flexible and expressive, and there is no reason we cannot represent assertions and proofs in the
same general framework.
For example, we could introduce a new type, Prop, to represent propositions, and introduce constructors to build new
propositions from others.

constant and : Prop → Prop → Prop

constant or : Prop → Prop → Prop

constant not : Prop → Prop

constant implies : Prop → Prop → Prop

variables p q r : Prop

#check and p q -- Prop

#check or (and p q) r -- Prop

#check implies (and p q) (and q p) -- Prop

We could then introduce, for each element p : Prop, another type Proof p, for the type of proofs of p. An “axiom”
would be a constant of such a type.

constant Proof : Prop → Type

constant and_comm : Π p q : Prop,

Proof (implies (and p q) (and q p))

variables p q : Prop

#check and_comm p q -- Proof (implies (and p q) (and q p))

In addition to axioms, however, we would also need rules to build new proofs from old ones. For example, in many proof
systems for propositional logic, we have the rule of modus ponens:

From a proof of implies p q and a proof of p, we obtain a proof of q.
We could represent this as follows:

23

Theorem Proving in Lean, Release 3.23.0

constant modus_ponens :

Π p q : Prop, Proof (implies p q) → Proof p → Proof q

Systems of natural deduction for propositional logic also typically rely on the following rule:
Suppose that, assuming p as a hypothesis, we have a proof of q. Then we can “cancel” the hypothesis and
obtain a proof of implies p q.

We could render this as follows:

constant implies_intro :

Π p q : Prop, (Proof p → Proof q) → Proof (implies p q).

This approach would provide us with a reasonable way of building assertions and proofs. Determining that an expression
t is a correct proof of assertion p would then simply be a matter of checking that t has type Proof p.
Some simplifications are possible, however. To start with, we can avoid writing the term Proof repeatedly by conflating
Proof p with p itself. In other words, whenever we have p : Prop, we can interpret p as a type, namely, the type of
its proofs. We can then read t : p as the assertion that t is a proof of p.
Moreover, once we make this identification, the rules for implication show that we can pass back and forth between
implies p q and p → q. In other words, implication between propositions p and q corresponds to having a function that
takes any element of p to an element of q. As a result, the introduction of the connective implies is entirely redundant:
we can use the usual function space constructor p → q from dependent type theory as our notion of implication.
This is the approach followed in the Calculus of Constructions, and hence in Lean as well. The fact that the rules for
implication in a proof system for natural deduction correspond exactly to the rules governing abstraction and application
for functions is an instance of the Curry-Howard isomorphism, sometimes known as the propositions-as-types paradigm.
In fact, the type Prop is syntactic sugar for Sort 0, the very bottom of the type hierarchy described in the last chapter.
Moreover, Type u is also just syntactic sugar for Sort (u+1). Prop has some special features, but like the other type
universes, it is closed under the arrow constructor: if we have p q : Prop, then p → q : Prop.
There are at least two ways of thinking about propositions as types. To some who take a constructive view of logic and
mathematics, this is a faithful rendering of what it means to be a proposition: a proposition p represents a sort of data
type, namely, a specification of the type of data that constitutes a proof. A proof of p is then simply an object t : p of
the right type.
Those not inclined to this ideology can view it, rather, as a simple coding trick. To each proposition p we associate a type
that is empty if p is false and has a single element, say *, if p is true. In the latter case, let us say that (the type associated
with) p is inhabited. It just so happens that the rules for function application and abstraction can conveniently help us
keep track of which elements of Prop are inhabited. So constructing an element t : p tells us that p is indeed true.
You can think of the inhabitant of p as being the “fact that p is true.” A proof of p → q uses “the fact that p is true” to
obtain “the fact that q is true.”
Indeed, if p : Prop is any proposition, Lean’s kernel treats any two elements t1 t2 : p as being definitionally equal,
much the same way as it treats (λ x, t)s and t[s/x] as definitionally equal. This is known as proof irrelevance, and is
consistent with the interpretation in the last paragraph. It means that even though we can treat proofs t : p as ordinary
objects in the language of dependent type theory, they carry no information beyond the fact that p is true.
The two ways we have suggested thinking about the propositions-as-types paradigm differ in a fundamental way. From the
constructive point of view, proofs are abstract mathematical objects that are denoted by suitable expressions in dependent
type theory. In contrast, if we think in terms of the coding trick described above, then the expressions themselves do not
denote anything interesting. Rather, it is the fact that we can write them down and check that they are well-typed that
ensures that the proposition in question is true. In other words, the expressions themselves are the proofs.
In the exposition below, we will slip back and forth between these two ways of talking, at times saying that an expression
“constructs” or “produces” or “returns” a proof of a proposition, and at other times simply saying that it “is” such a
proof. This is similar to the way that computer scientists occasionally blur the distinction between syntax and semantics

24 Chapter 3. Propositions and Proofs

Theorem Proving in Lean, Release 3.23.0

by saying, at times, that a program “computes” a certain function, and at other times speaking as though the program “is”
the function in question.
In any case, all that really matters is the bottom line. To formally express a mathematical assertion in the language of
dependent type theory, we need to exhibit a term p : Prop. To prove that assertion, we need to exhibit a term t : p.
Lean’s task, as a proof assistant, is to help us to construct such a term, t, and to verify that it is well-formed and has the
correct type.

3.2 Working with Propositions as Types
In the propositions-as-types paradigm, theorems involving only→ can be proved using lambda abstraction and application.
In Lean, the theorem command introduces a new theorem:

constants p q : Prop

theorem t1 : p → q → p := λ hp : p, λ hq : q, hp

This looks exactly like the definition of the constant function in the last chapter, the only difference being that the arguments
are elements of Prop rather than Type. Intuitively, our proof of p → q → p assumes p and q are true, and uses the
first hypothesis (trivially) to establish that the conclusion, p, is true.
Note that the theorem command is really a version of the definition command: under the propositions and types
correspondence, proving the theorem p → q → p is really the same as defining an element of the associated type. To
the kernel type checker, there is no difference between the two.
There are a few pragmatic differences between definitions and theorems, however. In normal circumstances, it is never
necessary to unfold the “definition” of a theorem; by proof irrelevance, any two proofs of that theorem are definitionally
equal. Once the proof of a theorem is complete, typically we only need to know that the proof exists; it doesn’t matter
what the proof is. In light of that fact, Lean tags proofs as irreducible, which serves as a hint to the parser (more precisely,
the elaborator) that there is generally no need to unfold it when processing a file. In fact, Lean is generally able to process
and check proofs in parallel, since assessing the correctness of one proof does not require knowing the details of another.
As with definitions, the #print command will show you the proof of a theorem.

theorem t1 : p → q → p := λ hp : p, λ hq : q, hp

#print t1

Notice that the lambda abstractions hp : p and hq : q can be viewed as temporary assumptions in the proof of t1.
Lean provides the alternative syntax assume for such a lambda abstraction:

theorem t1 : p → q → p :=

assume hp : p,

assume hq : q,

hp

Lean also allows us to specify the type of the final term hp, explicitly, with a show statement.

theorem t1 : p → q → p :=

assume hp : p,

assume hq : q,

show p, from hp

Adding such extra information can improve the clarity of a proof and help detect errors when writing a proof. The show
command does nothing more than annotate the type, and, internally, all the presentations of t1 that we have seen produce
the same term. Lean also allows you to use the alternative syntax lemma instead of theorem:

3.2. Working with Propositions as Types 25

Theorem Proving in Lean, Release 3.23.0

lemma t1 : p → q → p :=

assume hp : p,

assume hq : q,

show p, from hp

As with ordinary definitions, we can move the lambda-abstracted variables to the left of the colon:

theorem t1 (hp : p) (hq : q) : p := hp

#check t1 -- p → q → p

Now we can apply the theorem t1 just as a function application.

axiom hp : p

theorem t2 : q → p := t1 hp

Here, the axiom command is alternative syntax for constant. Declaring a “constant” hp : p is tantamount to declaring
that p is true, as witnessed by hp. Applying the theorem t1 : p → q → p to the fact hp : p that p is true yields
the theorem t2 : q → p.
Notice, by the way, that the original theorem t1 is true for any propositions p and q, not just the particular constants
declared. So it would be more natural to define the theorem so that it quantifies over those, too:

theorem t1 (p q : Prop) (hp : p) (hq : q) : p := hp

#check t1

The type of t1 is now ∀ p q : Prop, p → q → p. We can read this as the assertion “for every pair of propositions
p q, we have p → q → p.” The symbol ∀ is alternate syntax for Π, and later we will see how Pi types let us model
universal quantifiers more generally. For example, we can move all parameters to the right of the colon:

theorem t1 : ∀ (p q : Prop), p → q → p :=

λ (p q : Prop) (hp : p) (hq : q), hp

If p and q have been declared as variables, Lean will generalize them for us automatically:

variables p q : Prop

theorem t1 : p → q → p := λ (hp : p) (hq : q), hp

In fact, by the propositions-as-types correspondence, we can declare the assumption hp that p holds, as another variable:

variables p q : Prop

variable hp : p

theorem t1 : q → p := λ (hq : q), hp

Lean detects that the proof uses hp and automatically adds hp : p as a premise. In all cases, the command #check
t1 still yields ∀ p q : Prop, p → q → p. Remember that this type can just as well be written ∀ (p q : Prop)

(hp : p) (hq :q), p, since the arrow denotes nothing more than a Pi type in which the target does not depend on
the bound variable.
When we generalize t1 in such a way, we can then apply it to different pairs of propositions, to obtain different instances
of the general theorem.

26 Chapter 3. Propositions and Proofs

Theorem Proving in Lean, Release 3.23.0

theorem t1 (p q : Prop) (hp : p) (hq : q) : p := hp

variables p q r s : Prop

#check t1 p q -- p → q → p

#check t1 r s -- r → s → r

#check t1 (r → s) (s → r) -- (r → s) → (s → r) → r → s

variable h : r → s

#check t1 (r → s) (s → r) h -- (s → r) → r → s

Once again, using the propositions-as-types correspondence, the variable h of type r → s can be viewed as the hypothesis,
or premise, that r → s holds.
As another example, let us consider the composition function discussed in the last chapter, now with propositions instead
of types.

variables p q r s : Prop

theorem t2 (h1 : q → r) (h2 : p → q) : p → r :=

assume h3 : p,

show r, from h1 (h2 h3)

As a theorem of propositional logic, what does t2 say?
Note that it is often useful to use numeric unicode subscripts, entered as \0, \1, \2, …, for hypotheses, as we did in this
example.

3.3 Propositional Logic
Lean defines all the standard logical connectives and notation. The propositional connectives come with the following
notation:

Ascii Unicode Editor shortcut Definition
true true
false false
not ¬ \not, \neg not
/\ ∧ \and and
\/ ∨ \or or
-> → \to, \r, \imp
<-> ↔ \iff, \lr iff

They all take values in Prop.

variables p q : Prop

#check p → q → p ∧ q

#check ¬p → p ↔ false

#check p ∨ q → q ∨ p

The order of operations is as follows: unary negation ¬ binds most strongly, then ∧, then ∨, then→, and finally↔. For
example, a ∧ b → c ∨ d ∧ e means (a ∧ b) → (c ∨ (d ∧ e)). Remember that → associates to the
right (nothing changes now that the arguments are elements of Prop, instead of some other Type), as do the other binary

3.3. Propositional Logic 27

Theorem Proving in Lean, Release 3.23.0

connectives. So if we have p q r : Prop, the expression p → q → r reads “if p, then if q, then r.” This is just the
“curried” form of p ∧ q → r.
In the last chapter we observed that lambda abstraction can be viewed as an “introduction rule” for →. In the current
setting, it shows how to “introduce” or establish an implication. Application can be viewed as an “elimination rule,”
showing how to “eliminate” or use an implication in a proof. The other propositional connectives are defined in Lean’s
library in the file init.core (see Section 6.1 for more information on the library hierarchy), and each connective comes
with its canonical introduction and elimination rules.

3.3.1 Conjunction
The expression and.intro h1 h2 builds a proof of p ∧ q using proofs h1 : p and h2 : q. It is common to
describe and.intro as the and-introduction rule. In the next example we use and.intro to create a proof of p → q

→ p ∧ q.

example (hp : p) (hq : q) : p ∧ q := and.intro hp hq

#check assume (hp : p) (hq : q), and.intro hp hq

The example command states a theorem without naming it or storing it in the permanent context. Essentially, it just
checks that the given term has the indicated type. It is convenient for illustration, and we will use it often.
The expression and.elim_left h creates a proof of p from a proof h : p ∧ q. Similarly, and.elim_right h is
a proof of q. They are commonly known as the right and left and-elimination rules.

example (h : p ∧ q) : p := and.elim_left h

example (h : p ∧ q) : q := and.elim_right h

Because they are so commonly used, the standard library provides the abbreviations and.left and and.right for
and.elim_left and and.elim_right, respectively.
We can now prove p ∧ q → q ∧ p with the following proof term.

example (h : p ∧ q) : q ∧ p :=

and.intro (and.right h) (and.left h)

Notice that and-introduction and and-elimination are similar to the pairing and projection operations for the cartesian
product. The difference is that given hp : p and hq : q, and.intro hp hq has type p ∧ q : Prop, while
pair hp hq has type p × q : Type. The similarity between ∧ and × is another instance of the Curry-Howard
isomorphism, but in contrast to implication and the function space constructor, ∧ and × are treated separately in Lean.
With the analogy, however, the proof we have just constructed is similar to a function that swaps the elements of a pair.
We will see in Chapter 9 that certain types in Lean are structures, which is to say, the type is defined with a single canonical
constructor which builds an element of the type from a sequence of suitable arguments. For every p q : Prop, p ∧
q is an example: the canonical way to construct an element is to apply and.intro to suitable arguments hp : p and
hq : q. Lean allows us to use anonymous constructor notation 〈arg1, arg2, ...〉 in situations like these, when
the relevant type is an inductive type and can be inferred from the context. In particular, we can often write 〈hp, hq〉
instead of and.intro hp hq:

variables p q : Prop

variables (hp : p) (hq : q)

#check (〈hp, hq〉 : p ∧ q)

These angle brackets are obtained by typing \< and \>, respectively.

28 Chapter 3. Propositions and Proofs

Theorem Proving in Lean, Release 3.23.0

Lean provides another useful syntactic gadget. Given an expression e of an inductive type foo (possibly applied to some
arguments), the notation e.bar is shorthand for foo.bar e. This provides a convenient way of accessing functions
without opening a namespace. For example, the following two expressions mean the same thing:

variable l : list N

#check list.head l

#check l.head

As a result, given h : p ∧ q, we can write h.left for and.left h and h.right for and.right h. We can
therefore rewrite the sample proof above conveniently as follows:

example (h : p ∧ q) : q ∧ p :=

〈h.right, h.left〉

There is a fine line between brevity and obfuscation, and omitting information in this way can sometimes make a proof
harder to read. But for straightforward constructions like the one above, when the type of h and the goal of the construction
are salient, the notation is clean and effective.
It is common to iterate constructions like “and.” Lean also allows you to flatten nested constructors that associate to the
right, so that these two proofs are equivalent:

example (h : p ∧ q) : q ∧ p ∧ q:=

〈h.right, 〈h.left, h.right〉〉

example (h : p ∧ q) : q ∧ p ∧ q:=

〈h.right, h.left, h.right〉

This is often useful as well.

3.3.2 Disjunction
The expression or.intro_left q hp creates a proof of p ∨ q from a proof hp : p. Similarly, or.intro_right
p hq creates a proof for p ∨ q using a proof hq : q. These are the left and right or-introduction rules.

example (hp : p) : p ∨ q := or.intro_left q hp

example (hq : q) : p ∨ q := or.intro_right p hq

The or-elimination rule is slightly more complicated. The idea is that we can prove r from p ∨ q, by showing that r
follows from p and that r follows from q. In other words, it is a proof by cases. In the expression or.elim hpq hpr

hqr, or.elim takes three arguments, hpq : p ∨ q, hpr : p → r and hqr : q → r, and produces a proof of
r. In the following example, we use or.elim to prove p ∨ q → q ∨ p.

example (h : p ∨ q) : q ∨ p :=

or.elim h

(assume hp : p,

show q ∨ p, from or.intro_right q hp)

(assume hq : q,

show q ∨ p, from or.intro_left p hq)

In most cases, the first argument of or.intro_right and or.intro_left can be inferred automatically by Lean.
Lean therefore provides or.inr and or.inl as shorthand for or.intro_right _ and or.intro_left _. Thus the
proof term above could be written more concisely:

3.3. Propositional Logic 29

Theorem Proving in Lean, Release 3.23.0

example (h : p ∨ q) : q ∨ p :=

or.elim h (λ hp, or.inr hp) (λ hq, or.inl hq)

Notice that there is enough information in the full expression for Lean to infer the types of hp and hq as well. But using
the type annotations in the longer version makes the proof more readable, and can help catch and debug errors.
Because or has two constructors, we cannot use anonymous constructor notation. But we can still write h.elim instead
of or.elim h:

example (h : p ∨ q) : q ∨ p :=

h.elim

(assume hp : p, or.inr hp)

(assume hq : q, or.inl hq)

Once again, you should exercise judgment as to whether such abbreviations enhance or diminish readability.

3.3.3 Negation and Falsity
Negation, ¬p, is actually defined to be p → false, so we obtain ¬p by deriving a contradiction from p. Similarly, the
expression hnp hp produces a proof of false from hp : p and hnp : ¬p. The next example uses both these rules
to produce a proof of (p → q) → ¬q → ¬p. (The symbol ¬ is produced by typing \not or \neg.)

example (hpq : p → q) (hnq : ¬q) : ¬p :=

assume hp : p,

show false, from hnq (hpq hp)

The connective false has a single elimination rule, false.elim, which expresses the fact that anything follows from a
contradiction. This rule is sometimes called ex falso (short for ex falso sequitur quodlibet), or the principle of explosion.

example (hp : p) (hnp : ¬p) : q := false.elim (hnp hp)

The arbitrary fact, q, that follows from falsity is an implicit argument in false.elim and is inferred automatically. This
pattern, deriving an arbitrary fact from contradictory hypotheses, is quite common, and is represented by absurd.

example (hp : p) (hnp : ¬p) : q := absurd hp hnp

Here, for example, is a proof of ¬p → q → (q → p) → r:

example (hnp : ¬p) (hq : q) (hqp : q → p) : r :=

absurd (hqp hq) hnp

Incidentally, just as false has only an elimination rule, true has only an introduction rule, true.intro : true,
sometimes abbreviated trivial : true. In other words, true is simply true, and has a canonical proof, trivial.

3.3.4 Logical Equivalence
The expression iff.intro h1 h2 produces a proof of p ↔ q from h1 : p → q and h2 : q → p. The expression
iff.elim_left h produces a proof of p → q from h : p ↔ q. Similarly, iff.elim_right h produces a proof
of q → p from h : p ↔ q. Here is a proof of p ∧ q ↔ q ∧ p:

theorem and_swap : p ∧ q ↔ q ∧ p :=

iff.intro

(assume h : p ∧ q,

show q ∧ p, from and.intro (and.right h) (and.left h))

(continues on next page)

30 Chapter 3. Propositions and Proofs

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
(assume h : q ∧ p,

show p ∧ q, from and.intro (and.right h) (and.left h))

#check and_swap p q -- p ∧ q ↔ q ∧ p

Because they represent a form of modus ponens, iff.elim_left and iff.elim_right can be abbreviated iff.mp
and iff.mpr, respectively. In the next example, we use that theorem to derive q ∧ p from p ∧ q:

variable h : p ∧ q

example : q ∧ p := iff.mp (and_swap p q) h

We can use the anonymous constructor notation to construct a proof of p ↔ q from proofs of the forward and backward
directions, and we can also use . notation with mp and mpr. The previous examples can therefore be written concisely as
follows:

theorem and_swap : p ∧ q ↔ q ∧ p :=

〈 λ h, 〈h.right, h.left〉, λ h, 〈h.right, h.left〉 〉

example (h : p ∧ q) : q ∧ p := (and_swap p q).mp h

3.4 Introducing Auxiliary Subgoals
This is a good place to introduce another device Lean offers to help structure long proofs, namely, the have construct,
which introduces an auxiliary subgoal in a proof. Here is a small example, adapted from the last section:

variables p q : Prop

example (h : p ∧ q) : q ∧ p :=

have hp : p, from and.left h,

have hq : q, from and.right h,

show q ∧ p, from and.intro hq hp

Internally, the expression have h : p, from s, t produces the term (λ (h : p), t) s. In other words, s is a
proof of p, t is a proof of the desired conclusion assuming h : p, and the two are combined by a lambda abstraction and
application. This simple device is extremely useful when it comes to structuring long proofs, since we can use intermediate
have’s as stepping stones leading to the final goal.
Lean also supports a structured way of reasoning backwards from a goal, which models the “suffices to show” construction
in ordinary mathematics. The next example simply permutes the last two lines in the previous proof.

variables p q : Prop

example (h : p ∧ q) : q ∧ p :=

have hp : p, from and.left h,

suffices hq : q, from and.intro hq hp,

show q, from and.right h

Writing suffices hq : q leaves us with two goals. First, we have to show that it indeed suffices to show q, by proving
the original goal of q ∧ p with the additional hypothesis hq : q. Finally, we have to show q.

3.4. Introducing Auxiliary Subgoals 31

Theorem Proving in Lean, Release 3.23.0

3.5 Classical Logic
The introduction and elimination rules we have seen so far are all constructive, which is to say, they reflect a computational
understanding of the logical connectives based on the propositions-as-types correspondence. Ordinary classical logic adds
to this the law of the excluded middle, p ∨ ¬p. To use this principle, you have to open the classical namespace.

open classical

variable p : Prop

#check em p

Intuitively, the constructive “or” is very strong: asserting p ∨ q amounts to knowing which is the case. If RH represents
the Riemann hypothesis, a classical mathematician is willing to assert RH ∨ ¬RH, even though we cannot yet assert either
disjunct.
One consequence of the law of the excluded middle is the principle of double-negation elimination:

theorem dne {p : Prop} (h : ¬¬p) : p :=

or.elim (em p)

(assume hp : p, hp)

(assume hnp : ¬p, absurd hnp h)

Double-negation elimination allows one to prove any proposition, p, by assuming ¬p and deriving false, because that
amounts to proving ¬¬p. In other words, double-negation elimination allows one to carry out a proof by contradiction,
something which is not generally possible in constructive logic. As an exercise, you might try proving the converse, that
is, showing that em can be proved from dne.
The classical axioms also give you access to additional patterns of proof that can be justified by appeal to em. For example,
one can carry out a proof by cases:

example (h : ¬¬p) : p :=

by_cases

(assume h1 : p, h1)

(assume h1 : ¬p, absurd h1 h)

Or you can carry out a proof by contradiction:

example (h : ¬¬p) : p :=

by_contradiction

(assume h1 : ¬p,
show false, from h h1)

If you are not used to thinking constructively, it may take some time for you to get a sense of where classical reasoning is
used. It is needed in the following example because, from a constructive standpoint, knowing that p and q are not both
true does not necessarily tell you which one is false:

example (h : ¬(p ∧ q)) : ¬p ∨ ¬q :=

or.elim (em p)

(assume hp : p,

or.inr

(show ¬q, from

assume hq : q,

h 〈hp, hq〉))
(assume hp : ¬p,
or.inl hp)

32 Chapter 3. Propositions and Proofs

Theorem Proving in Lean, Release 3.23.0

We will see later that there are situations in constructive logic where principles like excluded middle and double-negation
elimination are permissible, and Lean supports the use of classical reasoning in such contexts without relying on excluded
middle.
The full list of axioms that are used in Lean to support classical reasoning are discussed in Chapter 11.

3.6 Examples of Propositional Validities
Lean’s standard library contains proofs of many valid statements of propositional logic, all of which you are free to use
in proofs of your own. The following list includes a number of common identities.
Commutativity:

1. p ∧ q ↔ q ∧ p

2. p ∨ q ↔ q ∨ p

Associativity:
3. (p ∧ q) ∧ r ↔ p ∧ (q ∧ r)

4. (p ∨ q) ∨ r ↔ p ∨ (q ∨ r)

Distributivity:
5. p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r)

6. p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r)

Other properties:
7. (p → (q → r)) ↔ (p ∧ q → r)

8. ((p ∨ q) → r) ↔ (p → r) ∧ (q → r)

9. ¬(p ∨ q) ↔ ¬p ∧ ¬q

10. ¬p ∨ ¬q → ¬(p ∧ q)

11. ¬(p ∧ ¬p)

12. p ∧ ¬q → ¬(p → q)

13. ¬p → (p → q)

14. (¬p ∨ q) → (p → q)

15. p ∨ false ↔ p

16. p ∧ false ↔ false

17. ¬(p ↔ ¬p)

18. (p → q) → (¬q → ¬p)

These require classical reasoning:
19. (p → r ∨ s) → ((p → r) ∨ (p → s))

20. ¬(p ∧ q) → ¬p ∨ ¬q

21. ¬(p → q) → p ∧ ¬q

22. (p → q) → (¬p ∨ q)

23. (¬q → ¬p) → (p → q)

24. p ∨ ¬p

3.6. Examples of Propositional Validities 33

Theorem Proving in Lean, Release 3.23.0

25. (((p → q) → p) → p)

The sorry identifier magically produces a proof of anything, or provides an object of any data type at all. Of course, it
is unsound as a proof method – for example, you can use it to prove false – and Lean produces severe warnings when
files use or import theorems which depend on it. But it is very useful for building long proofs incrementally. Start writing
the proof from the top down, using sorry to fill in subproofs. Make sure Lean accepts the term with all the sorry’s; if
not, there are errors that you need to correct. Then go back and replace each sorry with an actual proof, until no more
remain.
Here is another useful trick. Instead of using sorry, you can use an underscore _ as a placeholder. Recall that this tells
Lean that the argument is implicit, and should be filled in automatically. If Lean tries to do so and fails, it returns with an
error message “don’t know how to synthesize placeholder.” This is followed by the type of the term it is expecting, and
all the objects and hypothesis available in the context. In other words, for each unresolved placeholder, Lean reports the
subgoal that needs to be filled at that point. You can then construct a proof by incrementally filling in these placeholders.
For reference, here are two sample proofs of validities taken from the list above.

open classical

variables p q r : Prop

-- distributivity

example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

iff.intro

(assume h : p ∧ (q ∨ r),

have hp : p, from h.left,

or.elim (h.right)

(assume hq : q,

show (p ∧ q) ∨ (p ∧ r), from or.inl 〈hp, hq〉)
(assume hr : r,

show (p ∧ q) ∨ (p ∧ r), from or.inr 〈hp, hr〉))
(assume h : (p ∧ q) ∨ (p ∧ r),

or.elim h

(assume hpq : p ∧ q,

have hp : p, from hpq.left,

have hq : q, from hpq.right,

show p ∧ (q ∨ r), from 〈hp, or.inl hq〉)
(assume hpr : p ∧ r,

have hp : p, from hpr.left,

have hr : r, from hpr.right,

show p ∧ (q ∨ r), from 〈hp, or.inr hr〉))

-- an example that requires classical reasoning

example : ¬(p ∧ ¬q) → (p → q) :=

assume h : ¬(p ∧ ¬q),
assume hp : p,

show q, from

or.elim (em q)

(assume hq : q, hq)

(assume hnq : ¬q, absurd (and.intro hp hnq) h)

34 Chapter 3. Propositions and Proofs

Theorem Proving in Lean, Release 3.23.0

3.7 Exercises
1. Prove the following identities, replacing the “sorry” placeholders with actual proofs.

variables p q r : Prop

-- commutativity of ∧ and ∨
example : p ∧ q ↔ q ∧ p := sorry

example : p ∨ q ↔ q ∨ p := sorry

-- associativity of ∧ and ∨
example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := sorry

example : (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) := sorry

-- distributivity

example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := sorry

example : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r) := sorry

-- other properties

example : (p → (q → r)) ↔ (p ∧ q → r) := sorry

example : ((p ∨ q) → r) ↔ (p → r) ∧ (q → r) := sorry

example : ¬(p ∨ q) ↔ ¬p ∧ ¬q := sorry

example : ¬p ∨ ¬q → ¬(p ∧ q) := sorry

example : ¬(p ∧ ¬p) := sorry

example : p ∧ ¬q → ¬(p → q) := sorry

example : ¬p → (p → q) := sorry

example : (¬p ∨ q) → (p → q) := sorry

example : p ∨ false ↔ p := sorry

example : p ∧ false ↔ false := sorry

example : (p → q) → (¬q → ¬p) := sorry

2. Prove the following identities, replacing the “sorry” placeholders with actual proofs. These require classical rea-
soning.

open classical

variables p q r s : Prop

example : (p → r ∨ s) → ((p → r) ∨ (p → s)) := sorry

example : ¬(p ∧ q) → ¬p ∨ ¬q := sorry

example : ¬(p → q) → p ∧ ¬q := sorry

example : (p → q) → (¬p ∨ q) := sorry

example : (¬q → ¬p) → (p → q) := sorry

example : p ∨ ¬p := sorry

example : (((p → q) → p) → p) := sorry

3. Prove ¬(p ↔ ¬p) without using classical logic.

3.7. Exercises 35

Theorem Proving in Lean, Release 3.23.0

36 Chapter 3. Propositions and Proofs

CHAPTER

FOUR

QUANTIFIERS AND EQUALITY

The last chapter introduced you to methods that construct proofs of statements involving the propositional connectives.
In this chapter, we extend the repertoire of logical constructions to include the universal and existential quantifiers, and
the equality relation.

4.1 The Universal Quantifier
Notice that if α is any type, we can represent a unary predicate p on α as an object of type α → Prop. In that case,
given x : α, p x denotes the assertion that p holds of x. Similarly, an object r : α → α → Prop denotes a binary
relation on α: given x y : α, r x y denotes the assertion that x is related to y.
The universal quantifier, ∀ x : α, p x is supposed to denote the assertion that “for every x : α, p x” holds. As with
the propositional connectives, in systems of natural deduction, “forall” is governed by an introduction and elimination
rule. Informally, the introduction rule states:

Given a proof of p x, in a context where x : α is arbitrary, we obtain a proof ∀ x : α, p x.
The elimination rule states:

Given a proof ∀ x : α, p x and any term t : α, we obtain a proof of p t.
As was the case for implication, the propositions-as-types interpretation now comes into play. Remember the introduction
and elimination rules for Pi types:

Given a term t of type β x, in a context where x : α is arbitrary, we have (λ x : α, t) : Π x :

α, β x.
The elimination rule states:

Given a term s : Π x : α, β x and any term t : α, we have s t : β t.
In the case where p x has type Prop, if we replace Π x : α, β x with ∀ x : α, p x, we can read these as the
correct rules for building proofs involving the universal quantifier.
The Calculus of Constructions therefore identifies Π and ∀ in this way. If p is any expression, ∀ x : α, p is nothing
more than alternative notation for Π x : α, p, with the idea that the former is more natural than the latter in cases
where p is a proposition. Typically, the expression p will depend on x : α. Recall that, in the case of ordinary function
spaces, we could interpret α → β as the special case of Π x : α, β in which β does not depend on x. Similarly, we
can think of an implication p → q between propositions as the special case of ∀ x : p, q in which the expression q
does not depend on x.
Here is an example of how the propositions-as-types correspondence gets put into practice.

variables (α : Type*) (p q : α → Prop)

example : (∀ x : α, p x ∧ q x) → ∀ y : α, p y :=

(continues on next page)

37

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
assume h : ∀ x : α, p x ∧ q x,

assume y : α,
show p y, from (h y).left

As a notational convention, we give the universal quantifier the widest scope possible, so parentheses are needed to limit
the quantifier over x to the hypothesis in the example above. The canonical way to prove ∀ y : α, p y is to take an
arbitrary y, and prove p y. This is the introduction rule. Now, given that h has type ∀ x : α, p x ∧ q x, the
expression h y has type p y ∧ q y. This is the elimination rule. Taking the left conjunct gives the desired conclusion,
p y.
Remember that expressions which differ up to renaming of bound variables are considered to be equivalent. So, for
example, we could have used the same variable, x, in both the hypothesis and conclusion, and instantiated it by a different
variable, z, in the proof:

example : (∀ x : α, p x ∧ q x) → ∀ x : α, p x :=

assume h : ∀ x : α, p x ∧ q x,

assume z : α,
show p z, from and.elim_left (h z)

As another example, here is how we can express the fact that a relation, r, is transitive:

variables (α : Type*) (r : α → α → Prop)

variable trans_r : ∀ x y z, r x y → r y z → r x z

variables a b c : α
variables (hab : r a b) (hbc : r b c)

#check trans_r -- ∀ (x y z : α), r x y → r y z → r x z

#check trans_r a b c

#check trans_r a b c hab

#check trans_r a b c hab hbc

Think about what is going on here. When we instantiate trans_r at the values a b c, we end up with a proof of r a

b → r b c → r a c. Applying this to the “hypothesis” hab : r a b, we get a proof of the implication r b c

→ r a c. Finally, applying it to the hypothesis hbc yields a proof of the conclusion r a c.
In situations like this, it can be tedious to supply the arguments a b c, when they can be inferred from hab hbc. For
that reason, it is common to make these arguments implicit:

variables (α : Type*) (r : α → α → Prop)

variable trans_r : ∀ {x y z}, r x y → r y z → r x z

variables (a b c : α)
variables (hab : r a b) (hbc : r b c)

#check trans_r

#check trans_r hab

#check trans_r hab hbc

The advantage is that we can simply write trans_r hab hbc as a proof of r a c. A disadvantage is that Lean does not
have enough information to infer the types of the arguments in the expressions trans_r and trans_r hab. The output
of the first #check command is r ?M_1 ?M_2 → r ?M_2 ?M_3 → r ?M_1 ?M_3, indicating that the implicit
arguments are unspecified in this case.
Here is an example of how we can carry out elementary reasoning with an equivalence relation:

38 Chapter 4. Quantifiers and Equality

Theorem Proving in Lean, Release 3.23.0

variables (α : Type*) (r : α → α → Prop)

variable refl_r : ∀ x, r x x

variable symm_r : ∀ {x y}, r x y → r y x

variable trans_r : ∀ {x y z}, r x y → r y z → r x z

example (a b c d : α) (hab : r a b) (hcb : r c b) (hcd : r c d) :

r a d :=

trans_r (trans_r hab (symm_r hcb)) hcd

To get used to using universal quantifiers, you should try some of the exercises at the end of this section.
It is the typing rule for Pi types, and the universal quantifier in particular, that distinguishes Prop from other types.
Suppose we have α : Sort i and β : Sort j, where the expression β may depend on a variable x : α. Then
Π x : α, β is an element of Sort (imax i j), where imax i j is the maximum of i and j if j is not 0, and 0
otherwise.
The idea is as follows. If j is not 0, then Π x : α, β is an element of Sort (max i j). In other words, the type
of dependent functions from α to β “lives” in the universe whose index is the maximum of i and j. Suppose, however,
that β is of Sort 0, that is, an element of Prop. In that case, Π x : α, β is an element of Sort 0 as well, no
matter which type universe α lives in. In other words, if β is a proposition depending on α, then ∀ x : α, β is again
a proposition. This reflects the interpretation of Prop as the type of propositions rather than data, and it is what makes
Prop impredicative.
The term “predicative” stems from foundational developments around the turn of the twentieth century, when logicians
such as Poincaré and Russell blamed set-theoretic paradoxes on the “vicious circles” that arise when we define a property
by quantifying over a collection that includes the very property being defined. Notice that if α is any type, we can form
the type α → Prop of all predicates on α (the “power type of α”). The impredicativity of Prop means that we can
form propositions that quantify over α → Prop. In particular, we can define predicates on α by quantifying over all
predicates on α, which is exactly the type of circularity that was once considered problematic.

4.2 Equality
Let us now turn to one of the most fundamental relations defined in Lean’s library, namely, the equality relation. In
Chapter 7, we will explain how equality is defined from the primitives of Lean’s logical framework. In the meanwhile,
here we explain how to use it.
Of course, a fundamental property of equality is that it is an equivalence relation:

#check eq.refl -- ∀ (a : ?M_1), a = a

#check eq.symm -- ?M_2 = ?M_3 → ?M_3 = ?M_2

#check eq.trans -- ?M_2 = ?M_3 → ?M_3 = ?M_4 → ?M_2 = ?M_4

We can make the output easier to read by telling Lean not to insert the implicit arguments (which are displayed here as
metavariables).

universe u

#check @eq.refl.{u} -- ∀ {α : Sort u} (a : α), a = a

#check @eq.symm.{u} -- ∀ {α : Sort u} {a b : α}, a = b → b = a

#check @eq.trans.{u} -- ∀ {α : Sort u} {a b c : α},
-- a = b → b = c → a = c

The inscription .{u} tells Lean to instantiate the constants at the universe u.
Thus, for example, we can specialize the example from the previous section to the equality relation:

4.2. Equality 39

Theorem Proving in Lean, Release 3.23.0

variables (α : Type*) (a b c d : α)
variables (hab : a = b) (hcb : c = b) (hcd : c = d)

example : a = d :=

eq.trans (eq.trans hab (eq.symm hcb)) hcd

We can also use the projection notation:

example : a = d := (hab.trans hcb.symm).trans hcd

Reflexivity is more powerful than it looks. Recall that terms in the Calculus of Constructions have a computational
interpretation, and that the logical framework treats terms with a common reduct as the same. As a result, some nontrivial
identities can be proved by reflexivity:

variables (α β : Type*)

example (f : α → β) (a : α) : (λ x, f x) a = f a := eq.refl _

example (a : α) (b : α) : (a, b).1 = a := eq.refl _

example : 2 + 3 = 5 := eq.refl _

This feature of the framework is so important that the library defines a notation rfl for eq.refl _:

example (f : α → β) (a : α) : (λ x, f x) a = f a := rfl

example (a : α) (b : α) : (a, b).1 = a := rfl

example : 2 + 3 = 5 := rfl

Equality is much more than an equivalence relation, however. It has the important property that every assertion respects
the equivalence, in the sense that we can substitute equal expressions without changing the truth value. That is, given h1
: a = b and h2 : p a, we can construct a proof for p b using substitution: eq.subst h1 h2.

example (α : Type*) (a b : α) (p : α → Prop)

(h1 : a = b) (h2 : p a) : p b :=

eq.subst h1 h2

example (α : Type*) (a b : α) (p : α → Prop)

(h1 : a = b) (h2 : p a) : p b :=

h1 ▶ h2

The triangle in the second presentation is nothing more than notation for eq.subst, and you can enter it by typing \t.
The rule eq.subst is used to define the following auxiliary rules, which carry out more explicit substitutions. They are
designed to deal with applicative terms, that is, terms of form s t. Specifically, congr_arg can be used to replace the
argument, congr_fun can be used to replace the term that is being applied, and congr can be used to replace both at
once.

variable α : Type

variables a b : α
variables f g : α → N
variable h1 : a = b

variable h2 : f = g

example : f a = f b := congr_arg f h1
example : f a = g a := congr_fun h2 a

example : f a = g b := congr h2 h1

40 Chapter 4. Quantifiers and Equality

Theorem Proving in Lean, Release 3.23.0

Lean’s library contains a large number of common identities, such as these:

import data.int.basic

variables a b c d : Z

example : a + 0 = a := add_zero a

example : 0 + a = a := zero_add a

example : a * 1 = a := mul_one a

example : 1 * a = a := one_mul a

example : -a + a = 0 := neg_add_self a

example : a + -a = 0 := add_neg_self a

example : a - a = 0 := sub_self a

example : a + b = b + a := add_comm a b

example : a + b + c = a + (b + c) := add_assoc a b c

example : a * b = b * a := mul_comm a b

example : a * b * c = a * (b * c) := mul_assoc a b c

example : a * (b + c) = a * b + a * c := mul_add a b c

example : a * (b + c) = a * b + a * c := left_distrib a b c

example : (a + b) * c = a * c + b * c := add_mul a b c

example : (a + b) * c = a * c + b * c := right_distrib a b c

example : a * (b - c) = a * b - a * c := mul_sub a b c

example : (a - b) * c = a * c - b * c := sub_mul a b c

Note that mul_add and add_mul are alternative names for left_distrib and right_distrib, respectively. The
properties above are stated for the integers; the type Z can be entered as \int, though we can also use the ascii equivalent
int. Identities like these are designed to work in arbitrary instances of the relevant algebraic structures, using the type
class mechanism that is described in Chapter 10. In particular, all these facts hold in any commutative ring, of which
Lean recognizes the integers to be an instance. Chapter 6 provides some pointers as to how to find theorems like this in
the library.
Here is an example of a calculation in the natural numbers that uses substitution combined with associativity, commuta-
tivity, and distributivity of the integers.

variables x y z : Z

example (x y z : N) : x * (y + z) = x * y + x * z := mul_add x y z

example (x y z : N) : (x + y) * z = x * z + y * z := add_mul x y z

example (x y z : N) : x + y + z = x + (y + z) := add_assoc x y z

example (x y : N) :

(x + y) * (x + y) = x * x + y * x + x * y + y * y :=

have h1 : (x + y) * (x + y) = (x + y) * x + (x + y) * y,

from mul_add (x + y) x y,

have h2 : (x + y) * (x + y) = x * x + y * x + (x * y + y * y),

from (add_mul x y x) ▶ (add_mul x y y) ▶ h1,

h2.trans (add_assoc (x * x + y * x) (x * y) (y * y)).symm

Notice that the second implicit parameter to eq.subst, which provides the context in which the substitution is to occur,
has type α → Prop. Inferring this predicate therefore requires an instance of higher-order unification. In full generality,
the problem of determining whether a higher-order unifier exists is undecidable, and Lean can at best provide imperfect
and approximate solutions to the problem. As a result, eq.subst doesn’t always do what you want it to. This issue is
discussed in greater detail in Section 6.10.
Because equational reasoning is so common and important, Lean provides a number of mechanisms to carry it out more

4.2. Equality 41

Theorem Proving in Lean, Release 3.23.0

effectively. The next section offers syntax that allow you to write calculational proofs in a more natural and perspicuous
way. But, more importantly, equational reasoning is supported by a term rewriter, a simplifier, and other kinds of au-
tomation. The term rewriter and simplifier are described briefly in the next section, and then in greater detail in the next
chapter.

4.3 Calculational Proofs
A calculational proof is just a chain of intermediate results that are meant to be composed by basic principles such as the
transitivity of equality. In Lean, a calculation proof starts with the keyword calc, and has the following syntax:

calc

<expr>_0 'op_1' <expr>_1 ':' <proof>_1

'...' 'op_2' <expr>_2 ':' <proof>_2

...

'...' 'op_n' <expr>_n ':' <proof>_n

Each <proof>_i is a proof for <expr>_{i-1} op_i <expr>_i.
Here is an example:

import data.nat.basic

variables (a b c d e : N)
variable h1 : a = b

variable h2 : b = c + 1

variable h3 : c = d

variable h4 : e = 1 + d

theorem T : a = e :=

calc

a = b : h1

... = c + 1 : h2

... = d + 1 : congr_arg _ h3

... = 1 + d : add_comm d (1 : N)

... = e : eq.symm h4

The style of writing proofs is most effective when it is used in conjunction with the simp and rewrite tactics, which are
discussed in greater detail in the next chapter. For example, using the abbreviation rw for rewrite, the proof above could
be written as follows:

include h1 h2 h3 h4

theorem T : a = e :=

calc

a = b : by rw h1

... = c + 1 : by rw h2

... = d + 1 : by rw h3

... = 1 + d : by rw add_comm

... = e : by rw h4

In the next chapter, we will see that hypotheses can be introduced, renamed, and modified by tactics, so it is not always
clear what the names in rw h1 refer to (though, in this case, it is). For that reason, section variables and variables that
only appear in a tactic command or block are not automatically added to the context. The include command takes care
of that. Essentially, the rewrite tactic uses a given equality (which can be a hypothesis, a theorem name, or a complex
term) to “rewrite” the goal. If doing so reduces the goal to an identity t = t, the tactic applies reflexivity to prove it.

42 Chapter 4. Quantifiers and Equality

Theorem Proving in Lean, Release 3.23.0

Rewrites can be applied sequentially, so that the proof above can be shortened to this:

theorem T : a = e :=

calc

a = d + 1 : by rw [h1, h2, h3]

... = 1 + d : by rw add_comm

... = e : by rw h4

Or even this:

theorem T : a = e :=

by rw [h1, h2, h3, add_comm, h4]

The simp tactic, instead, rewrites the goal by applying the given identities repeatedly, in any order, anywhere they are
applicable in a term. It also uses other rules that have been previously declared to the system, and applies commutativity
wisely to avoid looping. As a result, we can also prove the theorem as follows:

theorem T : a = e :=

by simp [h1, h2, h3, h4, add_comm]

We will discuss variations of rw and simp in the next chapter.
The calc command can be configured for any relation that supports some form of transitivity. It can even combine
different relations.

theorem T2 (a b c d : N)
(h1 : a = b) (h2 : b ≤ c) (h3 : c + 1 < d) : a < d :=

calc

a = b : h1

... < b + 1 : nat.lt_succ_self b

... ≤ c + 1 : nat.succ_le_succ h2

... < d : h3

With calc, we can write the proof in the last section in a more natural and perspicuous way.

example (x y : N) :

(x + y) * (x + y) = x * x + y * x + x * y + y * y :=

calc

(x + y) * (x + y) = (x + y) * x + (x + y) * y : by rw mul_add

... = x * x + y * x + (x + y) * y : by rw add_mul

... = x * x + y * x + (x * y + y * y) : by rw add_mul

... = x * x + y * x + x * y + y * y : by rw ←add_assoc

Here the left arrow before add_assoc tells rewrite to use the identity in the opposite direction. (You can enter it with
\l or use the ascii equivalent, <-.) If brevity is what we are after, both rw and simp can do the job on their own:

example (x y : N) :

(x + y) * (x + y) = x * x + y * x + x * y + y * y :=

by rw [mul_add, add_mul, add_mul, ←add_assoc]

example (x y : N) :

(x + y) * (x + y) = x * x + y * x + x * y + y * y :=

by simp [mul_add, add_mul, add_assoc, add_left_comm]

4.3. Calculational Proofs 43

Theorem Proving in Lean, Release 3.23.0

4.4 The Existential Quantifier
Finally, consider the existential quantifier, which can be written as either exists x : α, p x or ∃ x : α, p x.
Both versions are actually notationally convenient abbreviations for a more long-winded expression, Exists (λ x :

α, p x), defined in Lean’s library.
As you should by now expect, the library includes both an introduction rule and an elimination rule. The introduction rule
is straightforward: to prove ∃ x : α, p x, it suffices to provide a suitable term t and a proof of p t. here are some
examples:

open nat

example : ∃ x : N, x > 0 :=

have h : 1 > 0, from zero_lt_succ 0,

exists.intro 1 h

example (x : N) (h : x > 0) : ∃ y, y < x :=

exists.intro 0 h

example (x y z : N) (hxy : x < y) (hyz : y < z) :

∃ w, x < w ∧ w < z :=

exists.intro y (and.intro hxy hyz)

#check @exists.intro

We can use the anonymous constructor notation 〈t, h〉 for exists.intro t h, when the type is clear from the context.

example : ∃ x : N, x > 0 :=

〈1, zero_lt_succ 0〉

example (x : N) (h : x > 0) : ∃ y, y < x :=

〈0, h〉

example (x y z : N) (hxy : x < y) (hyz : y < z) :

∃ w, x < w ∧ w < z :=

〈y, hxy, hyz〉

Note that exists.intro has implicit arguments: Lean has to infer the predicate p : α → Prop in the conclusion
∃ x, p x. This is not a trivial affair. For example, if we have have hg : g 0 0 = 0 and write exists.intro 0

hg, there are many possible values for the predicate p, corresponding to the theorems ∃ x, g x x = x, ∃ x, g x x

= 0, ∃ x, g x 0 = x, etc. Lean uses the context to infer which one is appropriate. This is illustrated in the following
example, in which we set the option pp.implicit to true to ask Lean’s pretty-printer to show the implicit arguments.

variable g : N → N → N
variable hg : g 0 0 = 0

theorem gex1 : ∃ x, g x x = x := 〈0, hg〉
theorem gex2 : ∃ x, g x 0 = x := 〈0, hg〉
theorem gex3 : ∃ x, g 0 0 = x := 〈0, hg〉
theorem gex4 : ∃ x, g x x = 0 := 〈0, hg〉

set_option pp.implicit true -- display implicit arguments

#print gex1

#print gex2

(continues on next page)

44 Chapter 4. Quantifiers and Equality

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
#print gex3

#print gex4

We can view exists.intro as an information-hiding operation, since it hides the witness to the body of the assertion.
The existential elimination rule, exists.elim, performs the opposite operation. It allows us to prove a proposition q
from ∃ x : α, p x, by showing that q follows from p w for an arbitrary value w. Roughly speaking, since we know
there is an x satisfying p x, we can give it a name, say, w. If q does not mention w, then showing that q follows from p

w is tantamount to showing the q follows from the existence of any such x. Here is an example:

variables (α : Type*) (p q : α → Prop)

example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=

exists.elim h

(assume w,

assume hw : p w ∧ q w,

show ∃ x, q x ∧ p x, from 〈w, hw.right, hw.left〉)

It may be helpful to compare the exists-elimination rule to the or-elimination rule: the assertion ∃ x : α, p x can be
thought of as a big disjunction of the propositions p a, as a ranges over all the elements of α. Note that the anonymous
constructor notation 〈w, hw.right, hw.left〉 abbreviates a nested constructor application; we could equally well
have written 〈w, 〈hw.right, hw.left〉〉.
Notice that an existential proposition is very similar to a sigma type, as described in Section 2.8. The difference is that
given a : α and h : p a, the term exists.intro a h has type (∃ x : α, p x) : Prop and sigma.mk
a h has type (Σ x : α, p x) : Type. The similarity between ∃ and Σ is another instance of the Curry-Howard
isomorphism.
Lean provides a more convenient way to eliminate from an existential quantifier with the match statement:

variables (α : Type*) (p q : α → Prop)

example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=

match h with 〈w, hw〉 :=

〈w, hw.right, hw.left〉
end

The match statement is part of Lean’s function definition system, which provides convenient and expressive ways of
defining complex functions. Once again, it is the Curry-Howard isomorphism that allows us to co-opt this mechanism for
writing proofs as well. The match statement “destructs” the existential assertion into the components w and hw, which
can then be used in the body of the statement to prove the proposition. We can annotate the types used in the match for
greater clarity:

example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=

match h with 〈(w : α), (hw : p w ∧ q w)〉 :=

〈w, hw.right, hw.left〉
end

We can even use the match statement to decompose the conjunction at the same time:

example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=

match h with 〈w, hpw, hqw〉 :=

〈w, hqw, hpw〉
end

Lean also provides a pattern-matching let expression:

4.4. The Existential Quantifier 45

Theorem Proving in Lean, Release 3.23.0

example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=

let 〈w, hpw, hqw〉 := h in 〈w, hqw, hpw〉

This is essentially just alternative notation for the match construct above. Lean will even allow us to use an implicit
match in the assume statement:

example : (∃ x, p x ∧ q x) → ∃ x, q x ∧ p x :=

assume 〈w, hpw, hqw〉, 〈w, hqw, hpw〉

We will see in Chapter 8 that all these variations are instances of a more general pattern-matching construct.
In the following example, we define is_even a as ∃ b, a = 2*b, and then we show that the sum of two even numbers
is an even number.

import data.nat.basic

def is_even (a : nat) := ∃ b, a = 2 * b

theorem even_plus_even {a b : nat}

(h1 : is_even a) (h2 : is_even b) : is_even (a + b) :=

exists.elim h1 (assume w1, assume hw1 : a = 2 * w1,

exists.elim h2 (assume w2, assume hw2 : b = 2 * w2,

exists.intro (w1 + w2)

(calc

a + b = 2 * w1 + 2 * w2 : by rw [hw1, hw2]

... = 2*(w1 + w2) : by rw mul_add)))

Using the various gadgets described in this chapter — the match statement, anonymous constructors, and the rewrite
tactic, we can write this proof concisely as follows:

theorem even_plus_even {a b : nat}

(h1 : is_even a) (h2 : is_even b) : is_even (a + b) :=

match h1, h2 with

〈w1, hw1〉, 〈w2, hw2〉 := 〈w1 + w2, by rw [hw1, hw2, mul_add]〉
end

Just as the constructive “or” is stronger than the classical “or,” so, too, is the constructive “exists” stronger than the classical
“exists”. For example, the following implication requires classical reasoning because, from a constructive standpoint,
knowing that it is not the case that every x satisfies ¬ p is not the same as having a particular x that satisfies p.

open classical

variables (α : Type*) (p : α → Prop)

example (h : ¬ ∀ x, ¬ p x) : ∃ x, p x :=

by_contradiction

(assume h1 : ¬ ∃ x, p x,

have h2 : ∀ x, ¬ p x, from

assume x,

assume h3 : p x,

have h4 : ∃ x, p x, from 〈x, h3〉,
show false, from h1 h4,

show false, from h h2)

What follows are some common identities involving the existential quantifier. In the exercises below, we encourage you

46 Chapter 4. Quantifiers and Equality

Theorem Proving in Lean, Release 3.23.0

to prove as many as you can. We also leave it to you to determine which are nonconstructive, and hence require some
form of classical reasoning.

open classical

variables (α : Type*) (p q : α → Prop)

variable r : Prop

example : (∃ x : α, r) → r := sorry

example (a : α) : r → (∃ x : α, r) := sorry

example : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r := sorry

example : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := sorry

example : (∀ x, p x) ↔ ¬ (∃ x, ¬ p x) := sorry

example : (∃ x, p x) ↔ ¬ (∀ x, ¬ p x) := sorry

example : (¬ ∃ x, p x) ↔ (∀ x, ¬ p x) := sorry

example : (¬ ∀ x, p x) ↔ (∃ x, ¬ p x) := sorry

example : (∀ x, p x → r) ↔ (∃ x, p x) → r := sorry

example (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := sorry

example (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) := sorry

Notice that the second example and the last two examples require the assumption that there is at least one element a of
type α.
Here are solutions to two of the more difficult ones:

example : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) :=

iff.intro

(assume 〈a, (h1 : p a ∨ q a)〉,
or.elim h1

(assume hpa : p a, or.inl 〈a, hpa〉)
(assume hqa : q a, or.inr 〈a, hqa〉))

(assume h : (∃ x, p x) ∨ (∃ x, q x),

or.elim h

(assume 〈a, hpa〉, 〈a, (or.inl hpa)〉)
(assume 〈a, hqa〉, 〈a, (or.inr hqa)〉))

example : (∃ x, p x → r) ↔ (∀ x, p x) → r :=

iff.intro

(assume 〈b, (hb : p b → r)〉,
assume h2 : ∀ x, p x,

show r, from hb (h2 b))

(assume h1 : (∀ x, p x) → r,

show ∃ x, p x → r, from

by_cases

(assume hap : ∀ x, p x, 〈a, λ h', h1 hap〉)
(assume hnap : ¬ ∀ x, p x,

by_contradiction

(assume hnex : ¬ ∃ x, p x → r,

have hap : ∀ x, p x, from

assume x,

by_contradiction

(assume hnp : ¬ p x,

(continues on next page)

4.4. The Existential Quantifier 47

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
have hex : ∃ x, p x → r,

from 〈x, (assume hp, absurd hp hnp)〉,
show false, from hnex hex),

show false, from hnap hap)))

4.5 More on the Proof Language
We have seen that keywords like assume, have, and show make it possible to write formal proof terms that mirror the
structure of informal mathematical proofs. In this section, we discuss some additional features of the proof language that
are often convenient.
To start with, we can use anonymous “have” expressions to introduce an auxiliary goal without having to label it. We can
refer to the last expression introduced in this way using the keyword this:

variable f : N → N
variable h : ∀ x : N, f x ≤ f (x + 1)

example : f 0 ≤ f 3 :=

have f 0 ≤ f 1, from h 0,

have f 0 ≤ f 2, from le_trans this (h 1),

show f 0 ≤ f 3, from le_trans this (h 2)

Often proofs move from one fact to the next, so this can be effective in eliminating the clutter of lots of labels.
When the goal can be inferred, we can also ask Lean instead to fill in the proof by writing by assumption:

variable f : N → N
variable h : ∀ x : N, f x ≤ f (x + 1)

example : f 0 ≤ f 3 :=

have f 0 ≤ f 1, from h 0,

have f 0 ≤ f 2, from le_trans (by assumption) (h 1),

show f 0 ≤ f 3, from le_trans (by assumption) (h 2)

This tells Lean to use the assumption tactic, which, in turn, proves the goal by finding a suitable hypothesis in the local
context. We will learn more about the assumption tactic in the next chapter.
We can also ask Lean to fill in the proof by writing ‹p›, where p is the proposition whose proof we want Lean to find in
the context.

example : f 0 ≥ f 1 → f 1 ≥ f 2 → f 0 = f 2 :=

assume : f 0 ≥ f 1,

assume : f 1 ≥ f 2,

have f 0 ≥ f 2, from le_trans this ‹f 0 ≥ f 1›,

have f 0 ≤ f 2, from le_trans (h 0) (h 1),

show f 0 = f 2, from le_antisymm this ‹f 0 ≥ f 2›

You can type these corner quotes using \f< and \f>, respectively. The letter “f” is for “French,” since the unicode
symbols can also be used as French quotation marks. In fact, the notation is defined in Lean as follows:

notation `‹` p `›` := show p, by assumption

This approach is more robust than using by assumption, because the type of the assumption that needs to be inferred
is given explicitly. It also makes proofs more readable. Here is a more elaborate example:

48 Chapter 4. Quantifiers and Equality

Theorem Proving in Lean, Release 3.23.0

example : f 0 ≤ f 3 :=

have f 0 ≤ f 1, from h 0,

have f 1 ≤ f 2, from h 1,

have f 2 ≤ f 3, from h 2,

show f 0 ≤ f 3, from le_trans ‹f 0 ≤ f 1›

(le_trans ‹f 1 ≤ f 2› ‹f 2 ≤ f 3›)

Keep in mind that you can use the French quotation marks in this way to refer to anything in the context, not just things
that were introduced anonymously. Its use is also not limited to propositions, though using it for data is somewhat odd:

example (n : N) : N := ‹N›

We can also assume a hypothesis without giving it a label:

example : f 0 ≥ f 1 → f 0 = f 1 :=

assume : f 0 ≥ f 1,

show f 0 = f 1, from le_antisymm (h 0) this

In contrast to the usage with have, an anonymous assume needs an extra colon. The reason is that Lean allows us to write
assume h to introduce a hypothesis without specifying it, and without the colon it would be ambiguous as to whether
the h here is meant as the label or the assumption.
As with the anonymous have, when you use an anonymous assume to introduce an assumption, that assumption can also
be invoked later in the proof by enclosing it in French quotes.

example : f 0 ≥ f 1 → f 1 ≥ f 2 → f 0 = f 2 :=

assume : f 0 ≥ f 1,

assume : f 1 ≥ f 2,

have f 0 ≥ f 2, from le_trans ‹f 2 ≤ f 1› ‹f 1 ≤ f 0›,

have f 0 ≤ f 2, from le_trans (h 0) (h 1),

show f 0 = f 2, from le_antisymm this ‹f 0 ≥ f 2›

Notice that le_antisymm is the assertion that if a ≤ b and b ≤ a then a = b, and a ≥ b is definitionally equal to
b ≤ a.

4.6 Exercises
1. Prove these equivalences:

variables (α : Type*) (p q : α → Prop)

example : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := sorry

example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := sorry

example : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x := sorry

You should also try to understand why the reverse implication is not derivable in the last example.
2. It is often possible to bring a component of a formula outside a universal quantifier, when it does not depend on the

quantified variable. Try proving these (one direction of the second of these requires classical logic):

variables (α : Type*) (p q : α → Prop)

variable r : Prop

example : α → ((∀ x : α, r) ↔ r) := sorry

(continues on next page)

4.6. Exercises 49

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
example : (∀ x, p x ∨ r) ↔ (∀ x, p x) ∨ r := sorry

example : (∀ x, r → p x) ↔ (r → ∀ x, p x) := sorry

3. Consider the “barber paradox,” that is, the claim that in a certain town there is a (male) barber that shaves all and
only the men who do not shave themselves. Prove that this is a contradiction:

variables (men : Type*) (barber : men)

variable (shaves : men → men → Prop)

example (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x) :

false := sorry

4. Remember that, without any parameters, an expression of type Prop is just an assertion. Fill in the definitions of
prime and Fermat_prime below, and construct each of the given assertions. For example, you can say that there
are infinitely many primes by asserting that for every natural number n, there is a prime number greater than n.
Goldbach’s weak conjecture states that every odd number greater than 5 is the sum of three primes. Look up the
definition of a Fermat prime or any of the other statements, if necessary.

import data.nat.parity

#check even

def prime (n : N) : Prop := sorry

def infinitely_many_primes : Prop := sorry

def Fermat_prime (n : N) : Prop := sorry

def infinitely_many_Fermat_primes : Prop := sorry

def goldbach_conjecture : Prop := sorry

def Goldbach's_weak_conjecture : Prop := sorry

def Fermat's_last_theorem : Prop := sorry

5. Prove as many of the identities listed in Section 4.4 as you can.
6. Give a calculational proof of the theorem log_mul below.

import data.real.basic

variables log exp : real → real

variable log_exp_eq : ∀ x, log (exp x) = x

variable exp_log_eq : ∀ {x}, x > 0 → exp (log x) = x

variable exp_pos : ∀ x, exp x > 0

variable exp_add : ∀ x y, exp (x + y) = exp x * exp y

-- this ensures the assumptions are available in tactic proofs

include log_exp_eq exp_log_eq exp_pos exp_add

example (x y z : real) :

exp (x + y + z) = exp x * exp y * exp z :=

(continues on next page)

50 Chapter 4. Quantifiers and Equality

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
by rw [exp_add, exp_add]

example (y : real) (h : y > 0) : exp (log y) = y :=

exp_log_eq h

theorem log_mul {x y : real} (hx : x > 0) (hy : y > 0) :

log (x * y) = log x + log y :=

sorry

7. Prove the theorem below, using only the ring properties ofZ enumerated in Section 4.2 and the theorem sub_self.

import data.int.basic

#check sub_self

example (x : Z) : x * 0 = 0 :=

sorry

4.6. Exercises 51

Theorem Proving in Lean, Release 3.23.0

52 Chapter 4. Quantifiers and Equality

CHAPTER

FIVE

TACTICS

In this chapter, we describe an alternative approach to constructing proofs, using tactics. A proof term is a representation of
a mathematical proof; tactics are commands, or instructions, that describe how to build such a proof. Informally, we might
begin a mathematical proof by saying “to prove the forward direction, unfold the definition, apply the previous lemma,
and simplify.” Just as these are instructions that tell the reader how to find the relevant proof, tactics are instructions that
tell Lean how to construct a proof term. They naturally support an incremental style of writing proofs, in which users
decompose a proof and work on goals one step at a time.
We will describe proofs that consist of sequences of tactics as “tactic-style” proofs, to contrast with the ways of writing
proof terms we have seen so far, which we will call “term-style” proofs. Each style has its own advantages and disad-
vantages. For example, tactic-style proofs can be harder to read, because they require the reader to predict or guess the
results of each instruction. But they can also be shorter and easier to write. Moreover, tactics offer a gateway to using
Lean’s automation, since automated procedures are themselves tactics.

5.1 Entering Tactic Mode
Conceptually, stating a theorem or introducing a have statement creates a goal, namely, the goal of constructing a term
with the expected type. For example, the following creates the goal of constructing a term of type p ∧ q ∧ p, in a
context with constants p q : Prop, hp : p and hq : q:

theorem test (p q : Prop) (hp : p) (hq : q) : p ∧ q ∧ p :=

sorry

We can write this goal as follows:

p : Prop, q : Prop, hp : p, hq : q ` p ∧ q ∧ p

Indeed, if you replace the “sorry” by an underscore in the example above, Lean will report that it is exactly this goal that
has been left unsolved.
Ordinarily, we meet such a goal by writing an explicit term. But wherever a term is expected, Lean allows us to insert
instead a begin ... end block, followed by a sequence of commands, separated by commas. We can prove the theorem
above in that way:

theorem test (p q : Prop) (hp : p) (hq : q) : p ∧ q ∧ p :=

begin

apply and.intro,

exact hp,

apply and.intro,

exact hq,

exact hp

end

53

Theorem Proving in Lean, Release 3.23.0

The apply tactic applies an expression, viewed as denoting a function with zero or more arguments. It unifies the
conclusion with the expression in the current goal, and creates new goals for the remaining arguments, provided that no
later arguments depend on them. In the example above, the command apply and.intro yields two subgoals:

p : Prop,

q : Prop,

hp : p,

hq : q

` p

` q ∧ p

For brevity, Lean only displays the context for the first goal, which is the one addressed by the next tactic command.
The first goal is met with the command exact hp. The exact command is just a variant of apply which signals that
the expression given should fill the goal exactly. It is good form to use it in a tactic proof, since its failure signals that
something has gone wrong. It is also more robust than apply, since the elaborator takes the expected type, given by the
target of the goal, into account when processing the expression that is being applied. In this case, however, apply would
work just as well.
You can see the resulting proof term with the #print command:

#print test

You can write a tactic script incrementally. In VS Code, you can open a window to display messages by pressing
Ctrl-Shift-Enter, and that window will then show you the current goal whenever the cursor is in a tactic block.
In Emacs, you can see the goal at the end of any line by pressing C-c C-g, or see the remaining goal in an incomplete
proof by putting the cursor on the end symbol.
Tactic commands can take compound expressions, not just single identifiers. The following is a shorter version of the
preceding proof:

theorem test (p q : Prop) (hp : p) (hq : q) : p ∧ q ∧ p :=

begin

apply and.intro hp,

exact and.intro hq hp

end

Unsurprisingly, it produces exactly the same proof term.

#print test

Tactic applications can also be concatenated with a semicolon. Formally speaking, there is only one (compound) step in
the following proof:

theorem test (p q : Prop) (hp : p) (hq : q) : p ∧ q ∧ p :=

begin

apply and.intro hp; exact and.intro hq hp

end

See Section 5.5 for a more precise description of the semantics of the semicolon. When a single tactic step can be used
to dispell a goal, you can use the by keyword instead of using a begin...end block.

theorem test (p q : Prop) (hp : p) (hq : q) : p ∧ q ∧ p :=

by exact and.intro hp (and.intro hq hp)

54 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

In VS Code, the tactic state will appear in the messages window whenever the cursor is within the contexts of the by. In
the Lean Emacs mode, if you put your cursor on the “b” in by and press C-c C-g, Lean shows you the goal that the
tactic is supposed to meet.
We will see below that hypotheses can be introduced, reverted, modified, and renamed over the course of a tactic block.
As a result, it is impossible for the Lean parser to detect when an identifier that occurs in a tactic block refers to a section
variable that should therefore be added to the context. As a result, you need to explicitly tell Lean to include the relevant
entities:

variables {p q : Prop} (hp : p) (hq : q)

include hp hq

example : p ∧ q ∧ p :=

begin

apply and.intro hp,

exact and.intro hq hp

end

The include command tells Lean to include the indicated variables (as well as any variables they depend on) from that
point on, until the end of the section or file. To limit the effect of an include, you can use the omit command afterwards:

include hp hq

example : p ∧ q ∧ p :=

begin

apply and.intro hp,

exact and.intro hq hp

end

omit hp hq

Thereafter, hp and hq are no longer included by default. Alternatively, you can use a section to delimit the scope.

section

include hp hq

example : p ∧ q ∧ p :=

begin

apply and.intro hp,

exact and.intro hq hp

end

end

Once again, thereafter, hp and hq are no longer included by default. Another workaround is to find a way to refer to the
variable in question before entering a tactic block:

example : p ∧ q ∧ p :=

let hp := hp, hq := hq in

begin

apply and.intro hp,

exact and.intro hq hp

end

Any mention of hp or hq at all outside a tactic block will cause them to be added to the hypotheses.

5.1. Entering Tactic Mode 55

Theorem Proving in Lean, Release 3.23.0

5.2 Basic Tactics
In addition to apply and exact, another useful tactic is intro, which introduces a hypothesis. What follows is an
example of an identity from propositional logic that we proved Section 3.6, now proved using tactics. We adopt the
following convention regarding indentation: whenever a tactic introduces one or more additional subgoals, we indent
another two spaces, until the additional subgoals are deleted. That rationale behind this convention, and other structuring
mechanisms, will be discussed in Section 5.4 below.

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

apply iff.intro,

intro h,

apply or.elim (and.right h),

intro hq,

apply or.inl,

apply and.intro,

exact and.left h,

exact hq,

intro hr,

apply or.inr,

apply and.intro,

exact and.left h,

exact hr,

intro h,

apply or.elim h,

intro hpq,

apply and.intro,

exact and.left hpq,

apply or.inl,

exact and.right hpq,

intro hpr,

apply and.intro,

exact and.left hpr,

apply or.inr,

exact and.right hpr

end

The intro command can more generally be used to introduce a variable of any type:

example (α : Type*) : α → α :=

begin

intro a,

exact a

end

example (α : Type*) : ∀ x : α, x = x :=

begin

intro x,

exact eq.refl x

end

It has a plural form, intros, which takes a list of names.

56 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

example : ∀ a b c : N, a = b → a = c → c = b :=

begin

intros a b c h1 h2,

exact eq.trans (eq.symm h2) h1
end

The intros command can also be used without any arguments, in which case, it chooses names and introduces as many
variables as it can. We will see an example of this in a moment.
The assumption tactic looks through the assumptions in context of the current goal, and if there is one matching the
conclusion, it applies it.

variables x y z w : N

example (h1 : x = y) (h2 : y = z) (h3 : z = w) : x = w :=

begin

apply eq.trans h1,

apply eq.trans h2,

assumption -- applied h3
end

It will unify metavariables in the conclusion if necessary:

example (h1 : x = y) (h2 : y = z) (h3 : z = w) : x = w :=

begin

apply eq.trans,

assumption, -- solves x = ?m_1 with h1
apply eq.trans,

assumption, -- solves y = ?m_1 with h2
assumption -- solves z = w with h3

end

The following example uses the intros command to introduce the three variables and two hypotheses automatically:

example : ∀ a b c : N, a = b → a = c → c = b :=

begin

intros,

apply eq.trans,

apply eq.symm,

assumption,

assumption

end

There are tactics reflexivity, symmetry, and transitivity, which apply the corresponding operation. Using
reflexivity, for example, is more general than writing apply eq.refl, because it works for any relation that has been
tagged with the refl attribute. (Attributes will be discussed in Section 6.4.) The reflexivity tactic can also be
abbreviated as refl.

example (y : N) : (λ x : N, 0) y = 0 :=

begin

refl

end

example (x : N) : x ≤ x :=

(continues on next page)

5.2. Basic Tactics 57

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
begin

refl

end

With these tactics, the transitivity proof above can be written more elegantly as follows:

example : ∀ a b c : N, a = b → a = c → c = b :=

begin

intros,

transitivity,

symmetry,

assumption,

assumption

end

In each case, the use of transitivity introduces a metavariable for the middle term, which is then determined by the later
tactics. Alternatively, we can send this middle term as an optional argument to transitivity:

example : ∀ a b c : N, a = b → a = c → c = b :=

begin

intros a b c h1 h2,

transitivity a,

symmetry,

assumption,

assumption

end

The repeat combinator can be used to simplify the last two lines:

example : ∀ a b c : N, a = b → a = c → c = b :=

begin

intros,

apply eq.trans,

apply eq.symm,

repeat { assumption }

end

The curly braces introduce a new tactic block; they are equivalent to using a nested begin ... end pair, as discussed
in the next section.
If some of the goals that are needed to complete the result of an apply depend on others, the apply tactic places those
subgoals last, in the hopes that they will be solved implicitly by the solutions to the previous subgoals. For example,
consider the following proof:

example : ∃ a : N, 5 = a :=

begin

apply exists.intro,

reflexivity

end

The first apply requires us to construct two values, namely, a value of a and a proof that 5 = a. But the apply tactic
takes the second goal to be the more important one, and places it first. Solving it with reflexivity forces a to be instantiated
to 5, at which point, the second goal is solved automatically.

58 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

Sometimes, however, we want to synthesize the necessary arguments in the order that they appear. For that purpose there
is a variant of apply called fapply:

example : ∃ a : N, a = a :=

begin

fapply exists.intro,

exact 0,

reflexivity

end

Here, the command fapply exists.intro leaves two goals. The first requires us to provide a natural number, a, and
the second requires us to prove that a = a. The second goal depends on the first, so solving the first goal instantiates a
metavariable in the second goal, which we then prove with reflexivity.
Another tactic that is sometimes useful is the revert tactic, which is, in a sense, an inverse to intro.

example (x : N) : x = x :=

begin

revert x,

-- goal is ` ∀ (x : N), x = x

intro y,

-- goal is y : N ` y = y

reflexivity

end

Moving a hypothesis into the goal yields an implication:

example (x y : N) (h : x = y) : y = x :=

begin

revert h,

-- goal is x y : N ` x = y → y = x

intro h1,

-- goal is x y : N, h1 : x = y ` y = x

symmetry,

assumption

end

But revert is even more clever, in that it will revert not only an element of the context but also all the subsequent
elements of the context that depend on it. For example, reverting x in the example above brings h along with it:

example (x y : N) (h : x = y) : y = x :=

begin

revert x,

-- goal is y : N ` ∀ (x : N), x = y → y = x

intros,

symmetry,

assumption

end

You can also revert multiple elements of the context at once:

example (x y : N) (h : x = y) : y = x :=

begin

revert x y,

-- goal is ` ∀ (x y : N), x = y → y = x

(continues on next page)

5.2. Basic Tactics 59

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
intros,

symmetry,

assumption

end

You can only revert an element of the local context, that is, a local variable or hypothesis. But you can replace an
arbitrary expression in the goal by a fresh variable using the generalize tactic.

example : 3 = 3 :=

begin

generalize : 3 = x,

-- goal is x : N ` x = x,

revert x,

-- goal is ` ∀ (x : N), x = x

intro y, reflexivity

end

The mnemonic in the notation above is that you are generalizing the goal by setting 3 to an arbitrary variable x. Be careful:
not every generalization preserves the validity of the goal. Here, generalize replaces a goal that could be proved using
reflexivity with one that is not provable:

example : 2 + 3 = 5 :=

begin

generalize : 3 = x,

-- goal is x : N ` 2 + x = 5,

sorry

end

In this example, the sorry tactic is the analogue of the sorry proof term. It closes the current goal, producing the usual
warning that sorry has been used. To preserve the validity of the previous goal, the generalize tactic allows us to
record the fact that 3 has been replaced by x. All we need to do is to provide a label, and generalize uses it to store
the assignment in the local context:

example : 2 + 3 = 5 :=

begin

generalize h : 3 = x,

-- goal is x : N, h : 3 = x ` 2 + x = 5,

rw ←h

end

Here the rewrite tactic, abbreviated rw, uses h to replace x by 3 again. The rewrite tactic will be discussed below.

5.3 More Tactics
Some additional tactics are useful for constructing and destructing propositions and data. For example, when applied to a
goal of the form p ∨ q, the tactics left and right are equivalent to apply or.inl and apply or.inr, respectively.
Conversely, the cases tactic can be used to decompose a disjunction.

example (p q : Prop) : p ∨ q → q ∨ p :=

begin

intro h,

cases h with hp hq,

(continues on next page)

60 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
-- case hp : p

right, exact hp,

-- case hq : q

left, exact hq

end

After cases h is applied, there are two goals. In the first, the hypothesis h : p ∨ q is replaced by hp : p, and in
the second, it is replaced by hq : q. The cases tactic can also be used to decompose a conjunction.

example (p q : Prop) : p ∧ q → q ∧ p :=

begin

intro h,

cases h with hp hq,

constructor, exact hq, exact hp

end

In this example, there is only one goal after the cases tactic is applied, with h : p ∧ q replaced by a pair of assumptions,
hp : p and hq : q. The constructor tactic applies the unique constructor for conjunction, and.intro. With
these tactics, an example from the previous section can be rewritten as follows:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

apply iff.intro,

intro h,

cases h with hp hqr,

cases hqr with hq hr,

left, constructor, repeat { assumption },

right, constructor, repeat { assumption },

intro h,

cases h with hpq hpr,

cases hpq with hp hq,

constructor, exact hp, left, exact hq,

cases hpr with hp hr,

constructor, exact hp, right, exact hr

end

We will see in Chapter 7 that these tactics are quite general. The cases tactic can be used to decompose any element of
an inductively defined type; constructor always applies the first constructor of an inductively defined type, and left
and right can be used with inductively defined types with exactly two constructors. For example, we can use cases
and constructor with an existential quantifier:

example (p q : N → Prop) : (∃ x, p x) → ∃ x, p x ∨ q x :=

begin

intro h,

cases h with x px,

constructor, left, exact px

end

Here, the constructor tactic leaves the first component of the existential assertion, the value of x, implicit. It is
represented by a metavariable, which should be instantiated later on. In the previous example, the proper value of the
metavariable is determined by the tactic exact px, since px has type p x. If you want to specify a witness to the
existential quantifier explicitly, you can use the existsi tactic instead:

5.3. More Tactics 61

Theorem Proving in Lean, Release 3.23.0

example (p q : N → Prop) : (∃ x, p x) → ∃ x, p x ∨ q x :=

begin

intro h,

cases h with x px,

existsi x, left, exact px

end

Here is another example:

example (p q : N → Prop) :

(∃ x, p x ∧ q x) → ∃ x, q x ∧ p x :=

begin

intro h,

cases h with x hpq,

cases hpq with hp hq,

existsi x,

split; assumption

end

Here the semicolon after split tells Lean to apply the assumption tactic to both of the goals that are introduced by
splitting the conjunction; see Section 5.5 for more information.
These tactics can be used on data just as well as propositions. In the next two examples, they are used to define functions
which swap the components of the product and sum types:

universes u v

def swap_pair {α : Type u} {β : Type v} : α × β → β × α :=

begin

intro p,

cases p with ha hb,

constructor, exact hb, exact ha

end

def swap_sum {α : Type u} {β : Type v} : α ⊕ β → β ⊕ α :=

begin

intro p,

cases p with ha hb,

right, exact ha,

left, exact hb

end

Note that up to the names we have chosen for the variables, the definitions are identical to the proofs of the analogous
propositions for conjunction and disjunction. The cases tactic will also do a case distinction on a natural number:

open nat

example (P : N → Prop) (h0 : P 0) (h1 : ∀ n, P (succ n)) (m : N) :

P m :=

begin

cases m with m', exact h0, exact h1 m'

end

The cases tactic, and its companion, the induction tactic, are discussed in greater detail in Section 7.6.

62 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

The contradiction tactic searches for a contradiction among the hypotheses of the current goal:

example (p q : Prop) : p ∧ ¬ p → q :=

begin

intro h, cases h, contradiction

end

5.4 Structuring Tactic Proofs
Tactics often provide an efficient way of building a proof, but long sequences of instructions can obscure the structure of
the argument. In this section, we describe some means that help provide structure to a tactic-style proof, making such
proofs more readable and robust.
One thing that is nice about Lean’s proof-writing syntax is that it is possible to mix term-style and tactic-style proofs,
and pass between the two freely. For example, the tactics apply and exact expect arbitrary terms, which you can write
using have, show, and so on. Conversely, when writing an arbitrary Lean term, you can always invoke the tactic mode
by inserting a begin...end block. The following is a somewhat toy example:

example (p q r : Prop) : p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r) :=

begin

intro h,

exact

have hp : p, from h.left,

have hqr : q ∨ r, from h.right,

show (p ∧ q) ∨ (p ∧ r),

begin

cases hqr with hq hr,

exact or.inl 〈hp, hq〉,
exact or.inr 〈hp, hr〉

end

end

The following is a more natural example:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

apply iff.intro,

intro h,

cases h.right with hq hr,

exact or.inl 〈h.left, hq〉,
exact or.inr 〈h.left, hr〉,

intro h,

cases h with hpq hpr,

exact 〈hpq.left, or.inl hpq.right〉,
exact 〈hpr.left, or.inr hpr.right〉

end

In fact, there is a show tactic, which is the analog of the show keyword in a proof term. It simply declares the type of the
goal that is about to be solved, while remaining in tactic mode. Moreover, in tactic mode, from is an alternative name
for exact. With the show and from tactics, the previous proof can be written more perspicuously as follows:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

(continues on next page)

5.4. Structuring Tactic Proofs 63

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
apply iff.intro,

intro h,

cases h.right with hq hr,

show (p ∧ q) ∨ (p ∧ r),

from or.inl 〈h.left, hq〉,
show (p ∧ q) ∨ (p ∧ r),

from or.inr 〈h.left, hr〉,
intro h,

cases h with hpq hpr,

show p ∧ (q ∨ r),

from 〈hpq.left, or.inl hpq.right〉,
show p ∧ (q ∨ r),

from 〈hpr.left, or.inr hpr.right〉
end

Alternatively, you can leave off the from and remain in tactic mode:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

apply iff.intro,

intro h,

cases h.right with hq hr,

show (p ∧ q) ∨ (p ∧ r),

{ left, split, exact h.left, assumption },

show (p ∧ q) ∨ (p ∧ r),

{ right, split, exact h.left, assumption },

intro h,

cases h with hpq hpr,

show p ∧ (q ∨ r),

{ cases hpq, split, assumption, left, assumption },

show p ∧ (q ∨ r),

{ cases hpr, split, assumption, right, assumption }

end

The show tactic can actually be used to rewrite a goal to something definitionally equivalent:

example (n : N) : n + 1 = nat.succ n :=

begin

show nat.succ n = nat.succ n,

reflexivity

end

In fact, show does a little more work. When there are multiple goals, you can use show to select which goal you want to
work on. Thus both proofs below work:

example (p q : Prop) : p ∧ q → q ∧ p :=

begin

intro h,

cases h with hp hq,

split,

show q, from hq,

show p, from hp

end
(continues on next page)

64 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

example (p q : Prop) : p ∧ q → q ∧ p :=

begin

intro h,

cases h with hp hq,

split,

show p, from hp,

show q, from hq

end

There is also a have tactic, which introduces a new subgoal, just as when writing proof terms:

example (p q r : Prop) : p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r) :=

begin

intro h,

cases h with hp hqr,

show (p ∧ q) ∨ (p ∧ r),

cases hqr with hq hr,

have hpq : p ∧ q,

from and.intro hp hq,

left, exact hpq,

have hpr : p ∧ r,

from and.intro hp hr,

right, exact hpr

end

As with show, you can omit the from and stay in tactic mode:

example (p q r : Prop) : p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r) :=

begin

intro h,

cases h with hp hqr,

show (p ∧ q) ∨ (p ∧ r),

cases hqr with hq hr,

have hpq : p ∧ q,

split; assumption,

left, exact hpq,

have hpr : p ∧ r,

split; assumption,

right, exact hpr

end

As with proof terms, you can omit the label in the have tactic, in which case, the default label this is used:

example (p q r : Prop) : p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r) :=

begin

intro h,

cases h with hp hqr,

show (p ∧ q) ∨ (p ∧ r),

cases hqr with hq hr,

have : p ∧ q,

split; assumption,

left, exact this,
(continues on next page)

5.4. Structuring Tactic Proofs 65

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
have : p ∧ r,

split; assumption,

right, exact this

end

You can also use the have tactic with the := token, which has the same effect as from:

example (p q r : Prop) : p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r) :=

begin

intro h,

have hp : p := h.left,

have hqr : q ∨ r := h.right,

show (p ∧ q) ∨ (p ∧ r),

cases hqr with hq hr,

exact or.inl 〈hp, hq〉,
exact or.inr 〈hp, hr〉

end

In this case, the types can be omitted, so we can write have hp := h.left and have hqr := h.right. In fact,
with this notation, you can even omit both the type and the label, in which case the new fact is introduced with the label
this.
Lean also has a let tactic, which is similar to the have tactic, but is used to introduce local definitions instead of auxiliary
facts. It is the tactic analogue of a let in a proof term.

example : ∃ x, x + 2 = 8 :=

begin

let a : N := 3 * 2,

existsi a,

reflexivity

end

As with have, you can leave the type implicit by writing let a := 3 * 2. The difference between let and have
is that let introduces a local definition in the context, so that the definition of the local constant can be unfolded in the
proof.
For even more structured proofs, you can nest begin...end blocks within other begin...end blocks. In a nested
block, Lean focuses on the first goal, and generates an error if it has not been fully solved at the end of the block. This
can be helpful in indicating the separate proofs of multiple subgoals introduced by a tactic.

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

apply iff.intro,

begin

intro h,

cases h.right with hq hr,

begin

show (p ∧ q) ∨ (p ∧ r),

exact or.inl 〈h.left, hq〉
end,

show (p ∧ q) ∨ (p ∧ r),

exact or.inr 〈h.left, hr〉
end,

intro h,
(continues on next page)

66 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
cases h with hpq hpr,

begin

show p ∧ (q ∨ r),

exact 〈hpq.left, or.inl hpq.right〉
end,

show p ∧ (q ∨ r),

exact 〈hpr.left, or.inr hpr.right〉
end

Here, we have introduced a new begin..end block whenever a tactic leaves more than one subgoal. You can check that
at every line in this proof, there is only one goal visible. Notice that you still need to use a comma after a begin...end
block when there are remaining goals to be discharged.
Within a begin...end block, you can abbreviate nested occurrences of begin and end with curly braces:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

apply iff.intro,

{ intro h,

cases h.right with hq hr,

{ show (p ∧ q) ∨ (p ∧ r),

exact or.inl 〈h.left, hq〉 },

show (p ∧ q) ∨ (p ∧ r),

exact or.inr 〈h.left, hr〉 },

intro h,

cases h with hpq hpr,

{ show p ∧ (q ∨ r),

exact 〈hpq.left, or.inl hpq.right〉 },

show p ∧ (q ∨ r),

exact 〈hpr.left, or.inr hpr.right〉
end

This helps explain the convention on indentation we have adopted here: every time a tactic leaves more than one subgoal,
we separate the remaining subgoals by enclosing them in blocks and indenting, until we are back down to one subgoal.
Thus if the application of theorem foo to a single goal produces four subgoals, one would expect the proof to look like
this:

begin

apply foo,

{ ... proof of first goal ... },

{ ... proof of second goal ... },

{ ... proof of third goal ... },

proof of final goal

end

Another reasonable convention is to enclose all the remaining subgoals in indented blocks, including the last one:

example (p q r : Prop) : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) :=

begin

apply iff.intro,

{ intro h,

cases h.right with hq hr,

{ show (p ∧ q) ∨ (p ∧ r),

(continues on next page)

5.4. Structuring Tactic Proofs 67

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
exact or.inl 〈h.left, hq〉 },

{ show (p ∧ q) ∨ (p ∧ r),

exact or.inr 〈h.left, hr〉 }},

{ intro h,

cases h with hpq hpr,

{ show p ∧ (q ∨ r),

exact 〈hpq.left, or.inl hpq.right〉 },

{ show p ∧ (q ∨ r),

exact 〈hpr.left, or.inr hpr.right〉 }}

end

With this convention, the proof using foo described above would look like this:

begin

apply foo,

{ ... proof of first goal ... },

{ ... proof of second goal ... },

{ ... proof of third goal ... },

{ ... proof of final goal}

end

Both conventions are reasonable. The second convention has the effect that the text in a long proof gradually creeps to
the right. Many theorems in mathematics have side conditions that can be dispelled quickly; using the first convention
means that the proofs of these side conditions are indented until we return to the “linear” part of the proof.
Combining these various mechanisms makes for nicely structured tactic proofs:

example (p q : Prop) : p ∧ q ↔ q ∧ p :=

begin

apply iff.intro,

{ intro h,

have hp : p := h.left,

have hq : q := h.right,

show q ∧ p,

exact 〈hq, hp〉 },

intro h,

have hp : p := h.right,

have hq : q := h.left,

show p ∧ q,

exact 〈hp, hq〉
end

5.5 Tactic Combinators
Tactic combinators are operations that form new tactics from old ones. A sequencing combinator is already implicit in the
commas that appear in a begin...end block:

example (p q : Prop) (hp : p) : p ∨ q :=

begin left, assumption end

This is essentially equivalent to the following:

68 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

example (p q : Prop) (hp : p) : p ∨ q :=

by { left, assumption }

Here, { left, assumption } is functionally equivalent to a single tactic which first applies left and then applies
assumption.
In an expression t1; t2, the semicolon provides a parallel version of the sequencing operation: t1 is applied to the
current goal, and then t2 is applied to all the resulting subgoals:

example (p q : Prop) (hp : p) (hq : q) : p ∧ q :=

by split; assumption

This is especially useful when the resulting goals can be finished off in a uniform way, or, at least, when it is possible to
make progress on all of them uniformly.
The orelse combinator, denoted <|>, applies one tactic, and then backtracks and applies another one if the first one fails:

example (p q : Prop) (hp : p) : p ∨ q :=

by { left, assumption } <|> { right, assumption}

example (p q : Prop) (hq : q) : p ∨ q :=

by { left, assumption } <|> { right, assumption}

In the first example, the left branch succeeds, whereas in the second one, it is the right one that succeeds. In the next three
examples, the same compound tactic succeeds in each case.

example (p q r : Prop) (hp : p) : p ∨ q ∨ r :=

by repeat { {left, assumption} <|> right <|> assumption }

example (p q r : Prop) (hq : q) : p ∨ q ∨ r :=

by repeat { {left, assumption} <|> right <|> assumption }

example (p q r : Prop) (hr : r) : p ∨ q ∨ r :=

by repeat { {left, assumption} <|> right <|> assumption }

The tactic tries to solve the left disjunct immediately by assumption; if that fails, it tries to focus on the right disjunct; and
if that doesn’t work, it invokes the assumption tactic.
Incidentally, a tactic expression is really a formal term in Lean, of type tactic α for some α. Tactics can be defined
and then applied later on.

meta def my_tac : tactic unit :=

`[repeat { {left, assumption} <|> right <|> assumption }]

example (p q r : Prop) (hp : p) : p ∨ q ∨ r :=

by my_tac

example (p q r : Prop) (hq : q) : p ∨ q ∨ r :=

by my_tac

example (p q r : Prop) (hr : r) : p ∨ q ∨ r :=

by my_tac

With a begin...end block or after a by, Lean’s parser uses special mechanisms to parse these expressions, but they
are similar to ordinary expressions in Lean like x + 2 and list α. (The annotation [...] in the definition of my_tac
above invokes the special parsing mechanism here, too.) The book Programming in Lean provides a fuller introduction

5.5. Tactic Combinators 69

https://leanprover.github.io/programming_in_lean/

Theorem Proving in Lean, Release 3.23.0

to writing tactics and installing them for interactive use. The tactic combinators we are discussing here serve as casual
entry points to the tactic programming language.
You will have no doubt noticed by now that tactics can fail. Indeed, it is the “failure” state that causes the orelse combinator
to backtrack and try the next tactic. The try combinator builds a tactic that always succeeds, though possibly in a trivial
way: try t executes t and reports success, even if t fails. It is equivalent to t <|> skip, where skip is a tactic that
does nothing (and succeeds in doing so). In the next example, the second split succeeds on the right conjunct q ∧ r

(remember that disjunction and conjunction associate to the right) but fails on the first. The try tactic ensures that the
sequential composition succeeds.

example (p q r : Prop) (hp : p) (hq : q) (hr : r) :

p ∧ q ∧ r :=

by split; try {split}; assumption

Be careful: repeat {try t} will loop forever, because the inner tactic never fails.
In a proof, there are often multiple goals outstanding. Parallel sequencing is one way to arrange it so that a single tactic
is applied to multiple goals, but there are other ways to do this. For example, all_goals t applies t to all open goals:

example (p q r : Prop) (hp : p) (hq : q) (hr : r) :

p ∧ q ∧ r :=

begin

split,

all_goals { try {split} },

all_goals { assumption }

end

In this case, the any_goals tactic provides a more robust solution. It is similar to all_goals, except it fails unless its
argument succeeds on at least one goal.

example (p q r : Prop) (hp : p) (hq : q) (hr : r) :

p ∧ q ∧ r :=

begin

split,

any_goals { split },

any_goals { assumption }

end

The first tactic in the begin...end block below repeatedly splits conjunctions:

example (p q r : Prop) (hp : p) (hq : q) (hr : r) :

p ∧ ((p ∧ q) ∧ r) ∧ (q ∧ r ∧ p) :=

begin

repeat { any_goals { split }},

all_goals { assumption }

end

In fact, we can compress the full tactic down to one line:

example (p q r : Prop) (hp : p) (hq : q) (hr : r) :

p ∧ ((p ∧ q) ∧ r) ∧ (q ∧ r ∧ p) :=

by repeat { any_goals { split <|> assumption} }

The combinators focus and solve1 go in the other direction. Specifically, focus t ensures that t only effects the
current goal, temporarily hiding the others from the scope. So, if t ordinarily only effects the current goal, focus {

all_goals {t} } has the same effect as t. The tactic solve1 t is similar, except that it fails unless t succeeds in

70 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

solving the goal entirely. The done tactic is also sometimes useful to direct the flow of control; it succeeds only if there
are no goals left to be solved.

5.6 Rewriting
The rewrite tactic (abbreviated rw) and the simp tactic were introduced briefly in Section 4.3. In this section and the
next, we discuss them in greater detail.
The rewrite tactic provides a basic mechanism for applying substitutions to goals and hypotheses, providing a convenient
and efficient way of working with equality. The most basic form of the tactic is rewrite t, where t is a term whose
type asserts an equality. For example, t can be a hypothesis h : x = y in the context; it can be a general lemma, like
add_comm : ∀ x y, x + y = y + x, in which the rewrite tactic tries to find suitable instantiations of x and y; or it
can be any compound term asserting a concrete or general equation. In the following example, we use this basic form to
rewrite the goal using a hypothesis.

variables (f : N → N) (k : N)

example (h1 : f 0 = 0) (h2 : k = 0) : f k = 0 :=

begin

rw h2, -- replace k with 0

rw h1 -- replace f 0 with 0

end

In the example above, the first use of rw replaces k with 0 in the goal f k = 0. Then, the second one replaces f 0

with 0. The tactic automatically closes any goal of the form t = t. Here is an example of rewriting using a compound
expression:

example (x y : N) (p : N → Prop) (q : Prop) (h : q → x = y)

(h' : p y) (hq : q) : p x :=

by { rw (h hq), assumption }

Here, h hq establishes the equation x = y. The parentheses around h hq are not necessary, but we have added them
for clarity.
Multiple rewrites can be combined using the notation rw [t_1, ..., t_n], which is just shorthand for rewrite
t_1, ..., rewrite t_n. The previous example can be written as follows:

variables (f : N → N) (k : N)

example (h1 : f 0 = 0) (h2 : k = 0) : f k = 0 :=

by rw [h2, h1]

By default, rw uses an equation in the forward direction, matching the left-hand side with an expression, and replacing it
with the right-hand side. The notation ←t can be used to instruct the tactic to use the equality t in the reverse direction.

variables (f : N → N) (a b : N)

example (h1 : a = b) (h2 : f a = 0) : f b = 0 :=

begin

rw [←h1, h2]

end

In this example, the term ←h1 instructs the rewriter to replace b with a. In the editors, you can type the backwards arrow
as \l. You can also use the ascii equivalent, <-.

5.6. Rewriting 71

Theorem Proving in Lean, Release 3.23.0

Sometimes the left-hand side of an identity can match more than one subterm in the pattern, in which case the rewrite
tactic chooses the first match it finds when traversing the term. If that is not the one you want, you can use additional
arguments to specify the appropriate subterm.

import data.nat.basic

example (a b c : N) : a + b + c = a + c + b :=

begin

rw [add_assoc, add_comm b, ←add_assoc]

end

example (a b c : N) : a + b + c = a + c + b :=

begin

rw [add_assoc, add_assoc, add_comm b]

end

example (a b c : N) : a + b + c = a + c + b :=

begin

rw [add_assoc, add_assoc, add_comm _ b]

end

In the first example above, the first step rewrites a + b + c to a + (b + c). Then next applies commutativity to
the term b + c; without specifying the argument, the tactic would instead rewrite a + (b + c) to (b + c) + a.
Finally, the last step applies associativity in the reverse direction rewriting a + (c + b) to a + c + b. The next two
examples instead apply associativity to move the parenthesis to the right on both sides, and then switch b and c. Notice
that the last example specifies that the rewrite should take place on the right-hand side by specifying the second argument
to add_comm.
By default, the rewrite tactic affects only the goal. The notation rw t at h applies the rewrite t at hypothesis h.

variables (f : N → N) (a : N)

example (h : a + 0 = 0) : f a = f 0 :=

by { rw add_zero at h, rw h }

The first step, rw add_zero at h, rewrites the hypothesis a + 0 = 0 to a = 0. Then the new hypothesis a = 0 is
used to rewrite the goal to f 0 = f 0.
The rewrite tactic is not restricted to propositions. In the following example, we use rw h at t to rewrite the
hypothesis t : tuple α n to v : tuple α 0.

def tuple (α : Type*) (n : N) :=

{ l : list α // list.length l = n }

variables {α : Type*} {n : N}

example (h : n = 0) (t : tuple α n) : tuple α 0 :=

begin

rw h at t,

exact t

end

Note that the rewrite tactic can carry out generic calculations in any algebraic structure. The following examples involve
an arbitrary ring and an arbitrary group, respectively.

72 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

import algebra.ring

example {α : Type*} [ring α] (a b c : α) :

a * 0 + 0 * b + c * 0 + 0 * a = 0 :=

begin

rw [mul_zero, mul_zero, zero_mul, zero_mul],

repeat { rw add_zero }

end

example {α : Type*} [group α] {a b : α} (h : a * b = 1) :

a ¹ = b :=

by rw [←(mul_one a ¹), ←h, inv_mul_cancel_left]

Using the type class mechanism described in Chapter 10, Lean identifies both abstract and concrete instances of the
relevant algebraic structures, and instantiates the relevant facts accordingly.

5.7 Using the Simplifier
Whereas rewrite is designed as a surgical tool for manipulating a goal, the simplifier offers a more powerful form of
automation. A number of identities in Lean’s library have been tagged with the [simp] attribute, and the simp tactic
uses them to iteratively rewrite subterms in an expression.

import data.nat.basic

variables (x y z : N) (p : N → Prop)

variable (h : p (x * y))

example : (x + 0) * (0 + y * 1 + z * 0) = x * y :=

by simp

include h

example : p ((x + 0) * (0 + y * 1 + z * 0)) :=

by { simp, assumption }

In the first example, the left-hand side of the equality in the goal is simplified using the usual identities involving 0 and 1,
reducing the goal to x * y = x * y. At that point, simp applies reflexivity to finish it off. In the second example, simp
reduces the goal to p (x * y), at which point the assumption h finishes it off. (Remember that we have to include h

explicitly because it is not explicitly mentioned.) Here are some more examples with lists:

import data.list.basic

variable {α : Type*}

open list

example (xs : list N) :

reverse (xs ++ [1, 2, 3]) = [3, 2, 1] ++ reverse xs :=

by simp

example (xs ys : list α) :

length (reverse (xs ++ ys)) = length xs + length ys :=

by simp [add_comm]

5.7. Using the Simplifier 73

Theorem Proving in Lean, Release 3.23.0

This example uses facts about lists that are found in Lean’s mathematics library, which we need to explicitly import.
As with rw, you can use the keyword at to simplify a hypothesis:

variables (x y z : N) (p : N → Prop)

example (h : p ((x + 0) * (0 + y * 1 + z * 0))) :

p (x * y) :=

by { simp at h, assumption }

Moreover, you can use a “wildcard” asterisk to simplify all the hypotheses and the goal:

variables (w x y z : N) (p : N → Prop)

local attribute [simp] mul_comm mul_assoc mul_left_comm

local attribute [simp] add_assoc add_comm add_left_comm

example (h : p (x * y + z * w * x)) : p (x * w * z + y * x) :=

by { simp at *, assumption }

example (h1 : p (1 * x + y)) (h2 : p (x * z * 1)) :

p (y + 0 + x) ∧ p (z * x) :=

by { simp at *, split; assumption }

For operations that are commutative and associative, like multiplication on the natural numbers, the simplifier uses these
two facts to rewrite an expression, as well as left commutativity. In the case of multiplication the latter is expressed as
follows: x * (y * z) = y * (x * z). The local attribute command tells the simplifier to use these rules in
the current file (or section or namespace, as the case may be). It may seem that commutativity and left-commutativity are
problematic, in that repeated application of either causes looping. But the simplifier detects identities that permute their
arguments, and uses a technique known as ordered rewriting. This means that the system maintains an internal ordering
of terms, and only applies the identity if doing so decreases the order. With the three identities mentioned above, this
has the effect that all the parentheses in an expression are associated to the right, and the expressions are ordered in a
canonical (though somewhat arbitrary) way. Two expressions that are equivalent up to associativity and commutativity
are then rewritten to the same canonical form.

example : x * y + z * w * x = x * w * z + y * x :=

by simp

example (h : p (x * y + z * w * x)) : p (x * w * z + y * x) :=

begin simp, simp at h, assumption end

As with the rewriter, the simplifier behaves appropriately in algebraic structures:

import algebra.ring

variables {α : Type*} [comm_ring α]

local attribute [simp] mul_comm mul_assoc mul_left_comm

local attribute [simp] add_assoc add_comm add_left_comm

example (x y z : α) : (x - x) * y + z = z :=

begin simp end

example (x y z w : α) : x * y + z * w * x = x * w * z + y * x :=

by simp

74 Chapter 5. Tactics

https://github.com/leanprover/mathlib

Theorem Proving in Lean, Release 3.23.0

As with rewrite, you can send simp a list of facts to use, including general lemmas, local hypotheses, definitions to
unfold, and compound expressions. The simp tactic does not recognize the ←t syntax that rewrite does, so to use an
identity in the other direction you need to use eq.symm explicitly. In any case, the additional rules are added to the
collection of identities that are used to simplify a term.

def f (m n : N) : N := m + n + m

example {m n : N} (h : n = 1) (h' : 0 = m) : (f m n) = n :=

by simp [h, h'.symm, f]

A common idiom is to simplify a goal using local hypotheses:

variables (f : N → N) (k : N)

example (h1 : f 0 = 0) (h2 : k = 0) : f k = 0 :=

by simp [h1, h2]

To use all the hypotheses present in the local context when simplifying, we can use the wildcard symbol, *:

example (h1 : f 0 = 0) (h2 : k = 0) : f k = 0 :=

by simp *

Here is another example:

import data.nat.basic

example (u w x y z : N) (h1 : x = y + z) (h2 : w = u + x) :

w = z + y + u :=

by simp [*, add_assoc, add_comm, add_left_comm]

The simplifier will also do propositional rewriting. For example, using the hypothesis p, it rewrites p ∧ q to q and p ∨
q to true, which it then proves trivially. Iterating such rewrites produces nontrivial propositional reasoning.

variables (p q r : Prop)

example (hp : p) : p ∧ q ↔ q :=

by simp *

example (hp : p) : p ∨ q :=

by simp *

example (hp : p) (hq : q) : p ∧ (q ∨ r) :=

by simp *

The next example simplifies all the hypotheses, and then uses them to prove the goal.

import data.nat.basic

variables (u w x x' y y' z : N) (p : N → Prop)

example (h1 : x + 0 = x') (h2 : y + 0 = y') :

x + y + 0 = x' + y' :=

by { simp at *, simp * }

5.7. Using the Simplifier 75

Theorem Proving in Lean, Release 3.23.0

One thing that makes the simplifier especially useful is that its capabilities can grow as a library develops. For example,
suppose we define a list operation that symmetrizes its input by appending its reversal:

import data.list.basic

open list

variables {α : Type*} (x y z : α) (xs ys zs : list α)

def mk_symm (xs : list α) := xs ++ reverse xs

Then for any list xs, reverse (mk_symm xs) is equal to mk_symm xs, which can easily be proved by unfolding the
definition:

theorem reverse_mk_symm (xs : list α) :

reverse (mk_symm xs) = mk_symm xs :=

by { unfold mk_symm, simp }

Or even more simply,

theorem reverse_mk_symm (xs : list α) :

reverse (mk_symm xs) = mk_symm xs :=

by simp [mk_symm]

We can now use this theorem to prove new results:

example (xs ys : list N) :

reverse (xs ++ mk_symm ys) = mk_symm ys ++ reverse xs :=

by simp [reverse_mk_symm]

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (mk_symm ys ++ reverse xs) :=

by simp [reverse_mk_symm] at h; assumption

But using reverse_mk_symm is generally the right thing to do, and it would be nice if users did not have to invoke it
explicitly. We can achieve that by marking it as a simplification rule when the theorem is defined:

@[simp] theorem reverse_mk_symm (xs : list α) :

reverse (mk_symm xs) = mk_symm xs :=

by simp [mk_symm]

example (xs ys : list N) :

reverse (xs ++ mk_symm ys) = mk_symm ys ++ reverse xs :=

by simp

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (mk_symm ys ++ reverse xs) :=

by simp at h; assumption

The notation @[simp] declares reverse_mk_symm to have the [simp] attribute, and can be spelled out more explicitly:

attribute [simp]

theorem reverse_mk_symm (xs : list α) :
(continues on next page)

76 Chapter 5. Tactics

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
reverse (mk_symm xs) = mk_symm xs :=

by simp [mk_symm]

The attribute can also be applied any time after the theorem is declared:

theorem reverse_mk_symm (xs : list α) :

reverse (mk_symm xs) = mk_symm xs :=

by simp [mk_symm]

attribute [simp] reverse_mk_symm

example (xs ys : list N) :

reverse (xs ++ mk_symm ys) = mk_symm ys ++ reverse xs :=

by simp

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (mk_symm ys ++ reverse xs) :=

by simp at h; assumption

Once the attribute is applied, however, there is no way to remove it; it persists in any file that imports the one where the
attribute is assigned. As we will discuss further in Section 6.4, one can limit the scope of an attribute to the current file
or section using the local attribute command:

section

local attribute [simp] reverse_mk_symm

example (xs ys : list N) :

reverse (xs ++ mk_symm ys) = mk_symm ys ++ reverse xs :=

by simp

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (mk_symm ys ++ reverse xs) :=

by simp at h; assumption

end

Outside the section, the simplifier will no longer use reverse_mk_symm by default.
You can even create your own sets of simplifier rules, to be applied in special situations.

run_cmd mk_simp_attr `my_simps

attribute [my_simps] reverse_mk_symm

example (xs ys : list N) :

reverse (xs ++ mk_symm ys) = mk_symm ys ++ reverse xs :=

by simp with my_simps

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (mk_symm ys ++ reverse xs) :=

(continues on next page)

5.7. Using the Simplifier 77

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
by simp with my_simps at h; assumption

The command run_cmd mk_simp_attr `my_simps creates a new attribute [my_simps]. (The backtick is used to
indicate that my_simps is a new name, something that is explained more fully in Programming in Lean.) The command
simp with my_simps then adds all the theorems that have been marked with attribute [my_simps] to the default set
of theorems marked with attribute [simp] before applying [simp], and similarly with simp with my_simps at h.
Note that the various simp options we have discussed — giving an explicit list of rules, using at to specify the location,
and using with to add additional simplifier rules — can be combined, but the order they are listed is rigid. You can see
the correct order in an editor by placing the cursor on the simp identifier to see the documentation string that is associated
with it.
There are two additional modifiers that are useful. By default, simp includes all theorems that have been marked with the
attribute [simp]. Writing simp only excludes these defaults, allowing you to use a more explicitly crafted list of rules.
Alternatively, writing simp without t filters t and removes it from the set of simplification rules. In the examples
below, the minus sign and only are used to block the application of reverse_mk_symm.

attribute [simp] reverse_mk_symm

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (mk_symm ys ++ reverse xs) :=

by { simp at h, assumption }

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (reverse (mk_symm ys) ++ reverse xs) :=

by { simp [-reverse_mk_symm] at h, assumption }

example (xs ys : list N) (p : list N → Prop)

(h : p (reverse (xs ++ (mk_symm ys)))) :

p (reverse (mk_symm ys) ++ reverse xs) :=

by { simp only [reverse_append] at h, assumption }

5.8 Exercises
1. Go back to the exercises in Chapter 3 and Chapter 4 and redo as many as you can now with tactic proofs, using

also rw and simp as appropriate.
2. Use tactic combinators to obtain a one line proof of the following:

example (p q r : Prop) (hp : p) :

(p ∨ q ∨ r) ∧ (q ∨ p ∨ r) ∧ (q ∨ r ∨ p) :=

by sorry

78 Chapter 5. Tactics

https://leanprover.github.io/programming_in_lean/

CHAPTER

SIX

INTERACTING WITH LEAN

You are now familiar with the fundamentals of dependent type theory, both as a language for defining mathematical
objects and a language for constructing proofs. The one thing you are missing is a mechanism for defining new data types.
We will fill this gap in the next chapter, which introduces the notion of an inductive data type. But first, in this chapter,
we take a break from the mechanics of type theory to explore some pragmatic aspects of interacting with Lean.
Not all of the information found here will be useful to you right away. We recommend skimming this section to get a
sense of Lean’s features, and then returning to it as necessary.

6.1 Importing Files
The goal of Lean’s front end is to interpret user input, construct formal expressions, and check that they are well formed
and type correct. Lean also supports the use of various editors, which provide continuous checking and feedback. More
information can be found on the Lean documentation pages.
The definitions and theorems in Lean’s standard library are spread across multiple files. Users may also wish to make use
of additional libraries, or develop their own projects across multiple files. When Lean starts, it automatically imports the
contents of the library init folder, which includes a number of fundamental definitions and constructions. As a result,
most of the examples we present here work “out of the box.”
If you want to use additional files, however, they need to be imported manually, via an import statement at the beginning
of a file. The command

import foo bar.baz.blah

imports the files foo.lean and bar/baz/blah.lean, where the descriptions are interpreted relative to the Lean search
path. Information as to how the search path is determined can be found on the documentation pages. By default, it includes
the standard library directory, and (in some contexts) the root of the user’s local project. One can also specify imports
relative to the current directory; for example,

import .foo ..bar.baz

tells Lean to import foo.lean from the current directory and bar/baz.lean relative to the parent of the current
directory.
Importing is transitive. In other words, if you import foo and foo imports bar, then you also have access to the contents
of bar, and do not need to import it explicitly.

6.2 More on Sections
Lean provides various sectioning mechanisms to help structure a theory. We saw in Section 2.6 that the section com-
mand makes it possible not only to group together elements of a theory that go together, but also to declare variables that

79

http://leanprover.github.io/documentation/
http://leanprover.github.io/documentation/

Theorem Proving in Lean, Release 3.23.0

are inserted as arguments to theorems and definitions, as necessary. Remember that the point of the variable command
is to declare variables for use in theorems, as in the following example:

import data.nat.basic

section

variables x y : N

def double := x + x

#check double y

#check double (2 * x)

local attribute [simp] add_assoc add_comm add_left_comm

theorem t1 : double (x + y) = double x + double y :=

by simp [double]

#check t1 y

#check t1 (2 * x)

theorem t2 : double (x * y) = double x * y :=

by simp [double, add_mul]

end

The definition of double does not have to declare x as an argument; Lean detects the dependence and inserts it auto-
matically. Similarly, Lean detects the occurrence of x in t1 and t2, and inserts it automatically there, too.
Note that double does not have y as argument. Variables are only included in declarations where they are actually men-
tioned. More precisely, they must be mentioned outside of a tactic block; because variables can appear and can be
renamed dynamically in a tactic proof, there is no reliable way of determining when a name used in a tactic proof refers
to an element of the context in which the theorem is parsed, and Lean does not try to guess. You can manually ask Lean
to include a variable in every definition in a section with the include command.

section

variables (x y z : N)
variables (h1 : x = y) (h2 : y = z)

include h1 h2
theorem foo : x = z :=

begin

rw [h1, h2]

end

omit h1 h2

theorem bar : x = z :=

eq.trans h1 h2

theorem baz : x = x := rfl

#check @foo

#check @bar

#check @baz

end

80 Chapter 6. Interacting with Lean

Theorem Proving in Lean, Release 3.23.0

The omit command simply undoes the effect of the include. It does not, however, prevent the arguments from being
included automatically in subsequent theorems that mention them. The scope of the include statement can also be
delimited by enclosing it in a section.

section include_hs

include h1 h2

theorem foo : x = z :=

begin

rw [h1, h2]

end

end include_hs

The include command is often useful with structures that are not mentioned explicitly but meant to be inferred by type
class inference, as described in Chapter 10.
It is often the case that we want to declare section variables as explicit variables but later make them implicit, or vice-versa.
One can do this with a variables command that mentions these variables with the desired brackets, without repeating
the type again. Once again, sections can be used to delimit scope. In the example below, the variables x, y, and z are
marked implicit in foo but explicit in bar, while x is (somewhat perversely) marked as implicit in baz.

section

variables (x y z : N)
variables (h1 : x = y) (h2 : y = z)

section

variables {x y z}

include h1 h2
theorem foo : x = z :=

begin

rw [h1, h2]

end

end

theorem bar : x = z :=

eq.trans h1 h2

variable {x}

theorem baz : x = x := rfl

#check @foo

#check @bar

#check @baz

end

Using these subsequent variables commands does not change the order in which variables are inserted. It only changes
the explicit / implicit annotations.
In fact, Lean has two ways of introducing local elements into the sections, namely, as variables or as parameters.
In the initial example in this section, the variable x is generalized immediately, so that even within the section double is
a function of x, and t1 and t2 depend explicitly on x. This is what makes it possible to apply double and t1 to other
expressions, like y and 2 * x. It corresponds to the ordinary mathematical locution “in this section, let x and y range
over the natural numbers.” Whenever x and y occur, we assume they denote natural numbers, but we do not assume they
refer to the same natural number from theorem to theorem.

6.2. More on Sections 81

Theorem Proving in Lean, Release 3.23.0

Sometimes, however, we wish to fix a value in a section. For example, following ordinary mathematical vernacular, we
might say “in this section, we fix a type, α, and a binary relation r on α.” The notion of a parameter captures this usage:

section

parameters {α : Type*} (r : α → α → Prop)

parameter transr : ∀ {x y z}, r x y → r y z → r x z

variables {a b c d e : α}

theorem t1 (h1 : r a b) (h2 : r b c) (h3 : r c d) : r a d :=

transr (transr h1 h2) h3

theorem t2 (h1 : r a b) (h2 : r b c) (h3 : r c d)

(h4 : r d e) :

r a e :=

transr h1 (t1 h2 h3 h4)

#check t1

#check t2

end

#check t1

#check t2

As with variables, the parameters α, r, and transr are inserted as arguments to definitions and theorems as needed. But
there is a difference: within the section, t1 is an abbreviation for @t1 α r transr, which is to say, these arguments are
held fixed until the section is closed. On the plus side, this means that you do not have to specify the explicit arguments r
and transr when you write t1 h2 h3 h4, in contrast to the previous example. But it also means that you cannot specify
other arguments in their place. In this example, making r a parameter is appropriate if r is the only binary relation you
want to reason about in the section. In that case, it would make sense to introduce temporary infix notation like � for r,
and we will see in Section 6.6 how to do that. On the other hand, if you want to apply your theorems to arbitrary binary
relations within the section, you should make r a variable.

6.3 More on Namespaces
In Lean, identifiers are given by hierarchical names like foo.bar.baz. We saw in Section 2.7 that Lean provides
mechanisms for working with hierarchical names. The command namespace foo causes foo to be prepended to the
name of each definition and theorem until end foo is encountered. The command open foo then creates temporary
aliases to definitions and theorems that begin with prefix foo.

namespace foo

def bar : N := 1

end foo

open foo

#check bar

#check foo.bar

It is not important that the definition of foo.bar was the result of a namespace command:

def foo.bar : N := 1

(continues on next page)

82 Chapter 6. Interacting with Lean

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
open foo

#check bar

#check foo.bar

Although the names of theorems and definitions have to be unique, the aliases that identify them do not. For example, the
standard library defines a theorem add_sub_cancel, which asserts a + b - b = a in any additive group. The corre-
sponding theorem on the natural numbers is named nat.add_sub_cancel; it is not a special case of add_sub_cancel,
because the natural numbers do not form a group. When we open the nat namespace, the expression add_sub_cancel
is overloaded, and can refer to either one. Lean tries to use type information to disambiguate the meaning in context,
but you can always disambiguate by giving the full name. To that end, the string _root_ is an explicit description of the
empty prefix.

import algebra.group.basic

#check add_sub_cancel

#check nat.add_sub_cancel

#check _root_.add_sub_cancel

We can prevent the shorter alias from being created by using the protected keyword:

namespace foo

protected def bar : N := 1

end foo

open foo

-- #check bar -- error

#check foo.bar

This is often used for names like nat.rec and nat.rec_on, to prevent overloading of common names.
The open command admits variations. The command

open nat (succ add sub)

creates aliases for only the identifiers listed. The command

open nat (hiding succ add sub)

creates aliases for everything in the nat namespace except the identifiers listed. The command

open nat (renaming mul → times) (renaming add → plus)

(hiding succ sub)

creates aliases for everything in the nat namespace except succ and sub, renaming nat.mul to times and nat.add
to plus.
It is sometimes useful to export aliases from one namespace to another, or to the top level. The command

export nat (succ add sub)

creates aliases for succ, add, and sub in the current namespace, so that whenever the namespace is open, these aliases are
available. If this command is used outside a namespace, the aliases are exported to the top level. The export command
admits all the variations described above.

6.3. More on Namespaces 83

Theorem Proving in Lean, Release 3.23.0

6.4 Attributes
The main function of Lean is to translate user input to formal expressions that are checked by the kernel for correctness
and then stored in the environment for later use. But some commands have other effects on the environment, either
assigning attributes to objects in the environment, defining notation, or declaring instances of type classes, as described in
Chapter 10. Most of these commands have global effects, which is to say, that they remain in effect not only in the current
file, but also in any file that imports it. However, such commands can often be prefixed with the local modifier, which
indicates that they only have effect until the current section or namespace is closed, or until the end of the current file.
In Section 5.7, we saw that theorems can be annotated with the [simp] attribute, which makes them available for use by
the simplifier. The following example defines the prefix relation on lists, proves that this relation is reflexive, and assigns
the [simp] attribute to that theorem.

variable {α : Type*}

def is_prefix (l1 : list α) (l2 : list α) : Prop :=

∃ t, l1 ++ t = l2

infix ` <+: `:50 := is_prefix

attribute [simp]

theorem list.is_prefix_refl (l : list α) : l <+: l :=

〈[], by simp〉

example : [1, 2, 3] <+: [1, 2, 3] := by simp

The simplifier then proves [1, 2, 3] <+: [1, 2, 3] by rewriting it to true. Lean allows the alternative annotation
@[simp] before a theorem to assign the attribute:

@[simp]

theorem list.is_prefix_refl (l : list α) : l <+: l :=

〈[], by simp〉

One can also assign the attribute any time after the definition takes place:

theorem list.is_prefix_refl (l : list α) : l <+: l :=

〈[], by simp〉

attribute [simp] list.is_prefix_refl

In all these cases, the attribute remains in effect in any file that imports the one in which the declaration occurs. Adding
the local modifier restricts the scope:

section

local attribute [simp]

theorem list.is_prefix_refl (l : list α) : l <+: l :=

〈[], by simp〉

example : [1, 2, 3] <+: [1, 2, 3] := by simp

end

-- error:

-- example : [1, 2, 3] <+: [1, 2, 3] := by simp

For another example, we can use the instance command to assign the notation ≤ to the is_prefix relation. That com-

84 Chapter 6. Interacting with Lean

Theorem Proving in Lean, Release 3.23.0

mand, which will be explained in Chapter 10, works by assigning an [instance] attribute to the associated definition.

instance list_has_le : has_le (list α) := 〈is_prefix〉

theorem list.is_prefix_refl (l : list α) : l ≤ l :=

〈[], by simp〉

That assignment can also be made local:

def list_has_le : has_le (list α) := 〈is_prefix〉

section

local attribute [instance] list_has_le

theorem foo (l : list α) : l ≤ l := 〈[], by simp〉
end

-- error:

-- theorem bar (l : list α) : l ≤ l := 〈[], by simp〉

For yet another example, the reflexivity tactic makes use of objects in the environment that have been tagged with
the [refl] attribute:

@[simp, refl]

theorem list.is_prefix_refl (l : list α) : l <+: l :=

〈[], by simp〉

example : [1, 2, 3] <+: [1, 2, 3] := by reflexivity

The scope of the [refl] attribute can similarly be restricted using the local modifier, as above.
In Section 6.6 below, we will discuss Lean’s mechanisms for defining notation, and see that they also support the local
modifier. However, in Section 6.9, we will discuss Lean’s mechanisms for setting options, which does not follow this
pattern: options can only be set locally, which is to say, their scope is always restricted to the current section or current
file.

6.5 More on Implicit Arguments
In Section 2.9, we saw that if Lean displays the type of a term t as Π {x : α}, β x, then the curly brackets indicate
that x has been marked as an implicit argument to t. This means that whenever you write t, a placeholder, or “hole,” is
inserted, so that t is replaced by @t _. If you don’t want that to happen, you have to write @t instead.
Notice that implicit arguments are inserted eagerly. Suppose we define a function f (x : N) {y : N} (z :

N) with the arguments shown. Then, when we write the expression f 7 without further arguments, it is parsed as f
7 _. Lean offers a weaker annotation, {{y : N}}, which specifies that a placeholder should only be added before a
subsequent explicit argument. This annotation can also be written using as {|y : N|}, where the unicode brackets are
entered as \{{ and \}}, respectively. With this annotation, the expression f 7 would be parsed as is, whereas f 7 3

would be parsed as f 7 _ 3, just as it would be with the strong annotation.
To illustrate the difference, consider the following example, which shows that a reflexive euclidean relation is both sym-
metric and transitive.

namespace hidden

variables {α : Type*} (r : α → α → Prop)

(continues on next page)

6.5. More on Implicit Arguments 85

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
definition reflexive : Prop := ∀ (a : α), r a a

definition symmetric : Prop := ∀ {a b : α}, r a b → r b a

definition transitive : Prop :=

∀ {a b c : α}, r a b → r b c → r a c

definition euclidean : Prop :=

∀ {a b c : α}, r a b → r a c → r b c

variable {r}

theorem th1 (reflr : reflexive r) (euclr : euclidean r) :

symmetric r :=

assume a b : α, assume : r a b,

show r b a, from euclr this (reflr _)

theorem th2 (symmr : symmetric r) (euclr : euclidean r) :

transitive r :=

assume (a b c : α), assume (rab : r a b) (rbc : r b c),

euclr (symmr rab) rbc

-- error:

/-

theorem th3 (reflr : reflexive r) (euclr : euclidean r) :

transitive r :=

th2 (th1 reflr euclr) euclr

-/

theorem th3 (reflr : reflexive r) (euclr : euclidean r) :

transitive r :=

@th2 _ _ (@th1 _ _ reflr @euclr) @euclr

end hidden

The results are broken down into small steps: th1 shows that a relation that is reflexive and euclidean is symmetric, and
th2 shows that a relation that is symmetric and euclidean is transitive. Then th3 combines the two results. But notice
that we have to manually disable the implicit arguments in th1, th2, and euclr, because otherwise too many implicit
arguments are inserted. The problem goes away if we use weak implicit arguments:

variables {α : Type*} (r : α → α → Prop)

definition reflexive : Prop := ∀ (a : α), r a a

definition symmetric : Prop := ∀ {|a b : α|}, r a b → r b a

definition transitive : Prop :=

∀ {|a b c : α|}, r a b → r b c → r a c

definition euclidean : Prop :=

∀ {|a b c : α|}, r a b → r a c → r b c

variable {r}

theorem th1 (reflr : reflexive r) (euclr : euclidean r) :

symmetric r :=

assume a b : α, assume : r a b,

show r b a, from euclr this (reflr _)

(continues on next page)

86 Chapter 6. Interacting with Lean

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
theorem th2 (symmr : symmetric r) (euclr : euclidean r) :

transitive r :=

assume (a b c : α), assume (rab : r a b) (rbc : r b c),

euclr (symmr rab) rbc

theorem th3 (reflr : reflexive r) (euclr : euclidean r) :

transitive r :=

th2 (th1 reflr euclr) euclr

There is a third kind of implicit argument that is denoted with square brackets, [and]. These are used for type classes,
as explained in Chapter 10.

6.6 Notation
Identifiers in Lean can include any alphanumeric characters, including Greek characters (other thanΠ , Σ , and λ , which,
as we have seen, have a special meaning in the dependent type theory). They can also include subscripts, which can be
entered by typing _ followed by the desired subscripted character.
Lean’s parser is extensible, which is to say, we can define new notation.

notation `[` a `**` b `]` := a * b + 1

def mul_square (a b : N) := a * a * b * b

infix (name := mul_square) `<*>`:50 := mul_square

#reduce [2 ** 3]

#reduce 2 <*> 3

In this example, the notation command defines a complex binary notation for multiplying and adding one. The infix
command declares a new infix operator, with precedence 50, which associates to the left. (More precisely, the token is
given left-binding power 50.) The command infixr defines notation which associates to the right, instead.
If you declare these notations in a namespace, the notation is only available when the namespace is open. You can declare
temporary notation using the keyword local, in which case the notation is available in the current file, and moreover,
within the scope of the current namespace or section, if you are in one.

local notation `[` a `**` b `]` := a * b + 1

local infix `<*>`:50 := λ a b : N, a * a * b * b

Lean’s core library declares the left-binding powers of a number of common symbols.
https://github.com/leanprover/lean/blob/master/library/init/core.lean

You are welcome to overload these symbols for your own use.
You can direct the pretty-printer to suppress notation with the command set_option pp.notation false. You can
also declare notation to be used for input purposes only with the [parsing_only] attribute:

notation [parsing_only] `[` a `**` b `]` := a * b + 1

variables a b : N
#check [a ** b]

6.6. Notation 87

https://github.com/leanprover/lean/blob/master/library/init/core.lean

Theorem Proving in Lean, Release 3.23.0

The output of the #check command displays the expression as a * b + 1. Lean also provides mechanisms for iterated
notation, such as [a, b, c, d, e] to denote a list with the indicated elements. See the discussion of list in the next
chapter for an example.
The possibility of declaring parameters in a section also makes it possible to define local notation that depends on those
parameters. In the example below, as long as the parameter m is fixed, we can write a ≡ b for equivalence modulo m. As
soon as the section is closed, however, the dependence on m becomes explicit, and the notation a ≡ b is no longer valid.

import data.int.basic

namespace int

def dvd (m n : Z) : Prop := ∃ k, n = m * k

instance : has_dvd int := 〈int.dvd〉

@[simp]

theorem dvd_zero (n : Z) : n | 0 :=

〈0, by simp〉

theorem dvd_intro {m n : Z} (k : Z) (h : n = m * k) : m | n :=

〈k, h〉

end int

open int

section mod_m

parameter (m : Z)
variables (a b c : Z)

definition mod_equiv := (m | b - a)

local infix ` ≡ `:50 := mod_equiv

theorem mod_refl : a ≡ a :=

show m | a - a, by simp

theorem mod_symm (h : a ≡ b) : b ≡ a :=

by cases h with c hc; apply dvd_intro (-c); simp [eq.symm hc]

local attribute [simp] add_assoc add_comm add_left_comm

theorem mod_trans (h1 : a ≡ b) (h2 : b ≡ c) : a ≡ c :=

begin

cases h1 with d hd, cases h2 with e he,

apply dvd_intro (d + e),

simp [mul_add, eq.symm hd, eq.symm he],

end

end mod_m

#check (mod_refl : ∀ (m a : Z), mod_equiv m a a)

#check (mod_symm : ∀ (m a b : Z), mod_equiv m a b →
mod_equiv m b a)

(continues on next page)

88 Chapter 6. Interacting with Lean

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

#check (mod_trans : ∀ (m a b c : Z), mod_equiv m a b →
mod_equiv m b c → mod_equiv m a c)

6.7 Coercions
In Lean, the type of natural numbers, nat, is different from the type of integers, int. But there is a function int.

of_nat that embeds the natural numbers in the integers, meaning that we can view any natural number as an integer,
when needed. Lean has mechanisms to detect and insert coercions of this sort.

variables m n : N
variables i j : Z

#check i + m -- i + ↑m : Z
#check i + m + j -- i + ↑m + j : Z
#check i + m + n -- i + ↑m + ↑n : Z

Notice that the output of the #check command shows that a coercion has been inserted by printing an arrow. The latter
is notation for the function coe; you can type the unicode arrow with \u or use coe instead. In fact, when the order of
arguments is different, you have to insert the coercion manually, because Lean does not recognize the need for a coercion
until it has already parsed the earlier arguments.

#check ↑m + i -- ↑m + i : Z
#check ↑(m + n) + i -- ↑(m + n) + i : Z
#check ↑m + ↑n + i -- ↑m + ↑n + i : Z

In fact, Lean allows various kinds of coercions using type classes; for details, see Section 10.6.

6.8 Displaying Information
There are a number of ways in which you can query Lean for information about its current state and the objects and
theorems that are available in the current context. You have already seen two of the most common ones, #check and
#reduce. Remember that #check is often used in conjunction with the @ operator, which makes all of the arguments to
a theorem or definition explicit. In addition, you can use the #print command to get information about any identifier.
If the identifier denotes a definition or theorem, Lean prints the type of the symbol, and its definition. If it is a constant
or an axiom, Lean indicates that fact, and shows the type.

-- examples with equality

#check eq

#check @eq

#check eq.symm

#check @eq.symm

#print eq.symm

-- examples with and

#check and

#check and.intro

#check @and.intro

-- a user-defined function
(continues on next page)

6.7. Coercions 89

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
def foo {α : Type*} (x : α) : α := x

#check foo

#check @foo

#reduce foo

#reduce (foo nat.zero)

#print foo

There are other useful #print commands:

#print definition : display definition

#print inductive : display an inductive type and its constructors

#print notation : display all notation

#print notation <tokens> : display notation using any of the tokens

#print axioms : display assumed axioms

#print options : display options set by user

#print prefix <namespace> : display all declarations in the namespace

#print classes : display all classes

#print instances <class name> : display all instances of the given class

#print fields <structure> : display all fields of a structure

We will discuss inductive types, structures, classes, instances in the next four chapters. Here are examples of how these
commands are used:

import algebra.ring.basic

#print notation

#print notation + * -

#print axioms

#print options

#print prefix nat

#print prefix nat.le

#print classes

#print instances ring

#print fields ring

The behavior of the generic print command is determined by its argument, so that the following pairs of commands all
do the same thing.

import algebra.group

#print list.append

#print definition list.append

#print +

#print notation +

#print nat

#print inductive nat

#print group

#print inductive group

90 Chapter 6. Interacting with Lean

Theorem Proving in Lean, Release 3.23.0

Moreover, both #print group and #print inductive group recognize that a group is a structure (see Chapter 9),
and so print the fields as well.

6.9 Setting Options
Lean maintains a number of internal variables that can be set by users to control its behavior. The syntax for doing so is
as follows:

set_option <name> <value>

One very useful family of options controls the way Lean’s pretty- printer displays terms. The following options take an
input of true or false:

pp.implicit : display implicit arguments

pp.universes : display hidden universe parameters

pp.coercions : show coercions

pp.notation : display output using defined notations

pp.beta : beta reduce terms before displaying them

As an example, the following settings yield much longer output:

set_option pp.implicit true

set_option pp.universes true

set_option pp.notation false

set_option pp.numerals false

#check 2 + 2 = 4

#reduce (λ x, x + 2) = (λ x, x + 3)

#check (λ x, x + 1) 1

The command set_option pp.all true carries out these settings all at once, whereas set_option pp.all false

reverts to the previous values. Pretty printing additional information is often very useful when you are debugging a proof,
or trying to understand a cryptic error message. Too much information can be overwhelming, though, and Lean’s defaults
are generally sufficient for ordinary interactions.
By default, the pretty-printer does not reduce applied lambda-expressions, but this is sometimes useful. The pp.beta
option controls this feature.

set_option pp.beta true

#check (λ x, x + 1) 1

6.10 Elaboration Hints
When you ask Lean to process an expression like λ x y z, f (x + y) z, you are leaving information implicit.
For example, the types of x, y, and z have to be inferred from the context, the notation + may be overloaded, and there
may be implicit arguments to f that need to be filled in as well. Moreover, we will see in Chapter 10 that some implicit
arguments are synthesized by a process known as type class resolution. And we have also already seen in the last chapter
that some parts of an expression can be constructed by the tactic framework.
Inferring some implicit arguments is straightforward. For example, suppose a function f has type Π {α : Type*},

α → α → α and Lean is trying to parse the expression f n, where n can be inferred to have type nat. Then it is
clear that the implicit argument α has to be nat. However, some inference problems are higher order. For example, the
substitution operation for equality, eq.subst, has the following type:

6.9. Setting Options 91

Theorem Proving in Lean, Release 3.23.0

eq.subst : ∀ {α : Sort u} {p : α → Prop} {a b : α},
a = b → p a → p b

Now suppose we are given a b : N and h1 : a = b and h2 : a * b > a. Then, in the expression eq.subst h1
h2, P could be any of the following:

• λ x, x * b > x

• λ x, x * b > a

• λ x, a * b > x

• λ x, a * b > a

In other words, our intent may be to replace either the first or second a in h2, or both, or neither. Similar ambiguities
arise in inferring induction predicates, or inferring function arguments. Even second-order unification is known to be
undecidable. Lean therefore relies on heuristics to fill in such arguments, and when it fails to guess the right ones, they
need to be provided explicitly.
To make matters worse, sometimes definitions need to be unfolded, and sometimes expressions need to be reduced
according to the computational rules of the underlying logical framework. Once again, Lean has to rely on heuristics
to determine what to unfold or reduce, and when.
There are attributes, however, that can be used to provide hints to the elaborator. One class of attributes determines
how eagerly definitions are unfolded: constants can be marked with the attribute [reducible], [semireducible], or
[irreducible]. Definitions are marked [semireducible] by default. A definition with the [reducible] attribute
is unfolded eagerly; if you think of a definition as serving as an abbreviation, this attribute would be appropriate. The
elaborator avoids unfolding definitions with the [irreducible] attribute. Theorems are marked [irreducible] by
default, because typically proofs are not relevant to the elaboration process.
It is worth emphasizing that these attributes are only hints to the elaborator. When checking an elaborated term for
correctness, Lean’s kernel will unfold whatever definitions it needs to unfold. As with other attributes, the ones above can
be assigned with the local modifier, so that they are in effect only in the current section or file.
Lean also has a family of attributes that control the elaboration strategy. A definition or theorem can be marked
[elab_with_expected_type], [elab_simple]. or [elab_as_eliminator]. When applied to a definition f,
these bear on elaboration of an expression f a b c ... in which f is applied to arguments. With the default attribute,
[elab_with_expected_type], the arguments a, b, c, … are elaborating using information about their expected type,
inferred from f and the previous arguments. In contrast, with [elab_simple], the arguments are elaborated from left
to right without propagating information about their types. The last attribute, [elab_as_eliminator], is commonly
used for eliminators like recursors, induction principles, and eq.subst. It uses a separate heuristic to infer higher-order
parameters. We will consider such operations in more detail in the next chapter.
Once again, these attributes can be assigned and reassigned after an object is defined, and you can use the localmodifier
to limit their scope. Moreover, using the @ symbol in front of an identifier in an expression instructs the elaborator to use
the [elab_simple] strategy; the idea is that, when you provide the tricky parameters explicitly, you want the elaborator
to weigh that information heavily. In fact, Lean offers an alternative annotation, @@, which leaves parameters before the
first higher-order parameter implicit. For example, @@eq.subst leaves the type of the equation implicit, but makes the
context of the substitution explicit.

6.11 Using the Library
To use Lean effectively you will inevitably need to make use of definitions and theorems in the library. Recall that the
import command at the beginning of a file imports previously compiled results from other files, and that importing is
transitive; if you import foo and foo imports bar, then the definitions and theorems from bar are available to you as
well. But the act of opening a namespace, which provides shorter names, does not carry over. In each file, you need to
open the namespaces you wish to use.

92 Chapter 6. Interacting with Lean

Theorem Proving in Lean, Release 3.23.0

In general, it is important for you to be familiar with the library and its contents, so you know what theorems, definitions,
notations, and resources are available to you. Below we will see that Lean’s editor modes can also help you find things you
need, but studying the contents of the library directly is often unavoidable. Lean’s standard library can be found online,
on github:

https://github.com/leanprover/lean/tree/master/library
You can see the contents of the directories and files using github’s browser interface. If you have installed Lean on your
own computer, you can find the library in the lean folder, and explore it with your file manager. Comment headers at
the top of each file provide additional information.
Lean’s library developers follow general naming guidelines to make it easier to guess the name of a theorem you need,
or to find it using tab completion in editors with a Lean mode that supports this, which is discussed in the next section.
Identifiers are generally snake_case, which is to say, they are composed of words written in lower case separated by
underscores. For the most part, we rely on descriptive names. Often the name of theorem simply describes the conclusion:

import data.nat.basic

open nat

#check succ_ne_zero

#check @mul_zero

#check @mul_one

#check @sub_add_eq_add_sub

#check @le_iff_lt_or_eq

If only a prefix of the description is enough to convey the meaning, the name may be made even shorter:

#check @neg_neg

#check pred_succ

Sometimes, to disambiguate the name of theorem or better convey the intended reference, it is necessary to describe some
of the hypotheses. The word “of” is used to separate these hypotheses:

import algebra.order.monoid.lemmas

#check @nat.lt_of_succ_le

#check @lt_of_not_ge

#check @lt_of_le_of_ne

#check @add_lt_add_of_lt_of_le

Sometimes the word “left” or “right” is helpful to describe variants of a theorem.

import algebra.order.monoid.lemmas

#check @add_le_add_left

#check @add_le_add_right

We can also use the word “self” to indicate a repeated argument:

import algebra.group.basic

#check mul_inv_self

#check neg_add_self

Remember that identifiers in Lean can be organized into hierarchical namespaces. For example, the theorem named
lt_of_succ_le in the namespace nat has full name nat.lt_of_succ_le, but the shorter name is made available by

6.11. Using the Library 93

https://github.com/leanprover/lean/tree/master/library

Theorem Proving in Lean, Release 3.23.0

the command open nat. We will see in Chapter 7 and Chapter 9 that defining structures and inductive data types in Lean
generates associated operations, and these are stored in a namespace with the same name as the type under definition. For
example, the product type comes with the following operations:

#check @prod.mk

#check @prod.fst

#check @prod.snd

#check @prod.rec

The first is used to construct a pair, whereas the next two, prod.fst and prod.snd, project the two elements. The last,
prod.rec, provides another mechanism for defining functions on a product in terms of a function on the two components.
Names like prod.rec are protected, which means that one has to use the full name even when the prod namespace is
open.
With the propositions as types correspondence, logical connectives are also instances of inductive types, and so we tend
to use dot notation for them as well:

#check @and.intro

#check @and.elim

#check @and.left

#check @and.right

#check @or.inl

#check @or.inr

#check @or.elim

#check @exists.intro

#check @exists.elim

#check @eq.refl

#check @eq.subst

94 Chapter 6. Interacting with Lean

CHAPTER

SEVEN

INDUCTIVE TYPES

We have seen that Lean’s formal foundation includes basic types, Prop, Type 0, Type 1, Type 2, ..., and allows
for the formation of dependent function types,Π x : α, β. In the examples, we have also made use of additional types
like bool, nat, and int, and type constructors, like list, and product,×. In fact, in Lean’s library, every concrete type
other than the universes and every type constructor other than Pi is an instance of a general family of type constructions
known as inductive types. It is remarkable that it is possible to construct a substantial edifice of mathematics based on
nothing more than the type universes, Pi types, and inductive types; everything else follows from those.
Intuitively, an inductive type is built up from a specified list of constructors. In Lean, the syntax for specifying such a
type is as follows:

inductive foo : Sort u

| constructor1 : ... → foo

| constructor2 : ... → foo

...

| constructorn : ... → foo

The intuition is that each constructor specifies a way of building new objects of foo, possibly from previously constructed
values. The type foo consists of nothing more than the objects that are constructed in this way. The first character | in
an inductive declaration is optional. We can also separate constructors using a comma instead of |.
We will see below that the arguments to the constructors can include objects of type foo, subject to a certain “positivity”
constraint, which guarantees that elements of foo are built from the bottom up. Roughly speaking, each ... can be any
Pi type constructed from foo and previously defined types, in which foo appears, if at all, only as the “target” of the Pi
type. For more details, see [Dybj94].
We will provide a number of examples of inductive types. We will also consider slight generalizations of the scheme
above, to mutually defined inductive types, and so-called inductive families.
As with the logical connectives, every inductive type comes with introduction rules, which show how to construct an
element of the type, and elimination rules, which show how to “use” an element of the type in another construction. The
analogy to the logical connectives should not come as a surprise; as we will see below, they, too, are examples of inductive
type constructions. You have already seen the introduction rules for an inductive type: they are just the constructors that
are specified in the definition of the type. The elimination rules provide for a principle of recursion on the type, which
includes, as a special case, a principle of induction as well.
In the next chapter, we will describe Lean’s function definition package, which provides even more convenient ways to
define functions on inductive types and carry out inductive proofs. But because the notion of an inductive type is so
fundamental, we feel it is important to start with a low-level, hands-on understanding. We will start with some basic
examples of inductive types, and work our way up to more elaborate and complex examples.

95

Theorem Proving in Lean, Release 3.23.0

7.1 Enumerated Types
The simplest kind of inductive type is simply a type with a finite, enumerated list of elements.

inductive weekday : Type

| sunday : weekday

| monday : weekday

| tuesday : weekday

| wednesday : weekday

| thursday : weekday

| friday : weekday

| saturday : weekday

The inductive command creates a new type, weekday. The constructors all live in the weekday namespace.

#check weekday.sunday

#check weekday.monday

open weekday

#check sunday

#check monday

Think of sunday, monday, . . ., saturday as being distinct elements of weekday, with no other distinguishing prop-
erties. The elimination principle, weekday.rec, is defined along with the type weekday and its constructors. It is
also known as a recursor, and it is what makes the type “inductive”: it allows us to define a function on weekday by
assigning values corresponding to each constructor. The intuition is that an inductive type is exhaustively generated by
the constructors, and has no elements beyond those they construct.
We will use a slight variant of weekday.rec, weekday.rec_on (also generated automatically), which takes its argu-
ments in a more convenient order. (Note that the shorter names rec and rec_on are not made available by default when
we open the weekday namespace. This avoids clashes with the functions of the same names for other inductive types.)
We can use weekday.rec_on to define a function from weekday to the natural numbers:

def number_of_day (d : weekday) : N :=

weekday.rec_on d 1 2 3 4 5 6 7

#reduce number_of_day weekday.sunday

#reduce number_of_day weekday.monday

#reduce number_of_day weekday.tuesday

The first (explicit) argument to rec_on is the element being “analyzed.” The next seven arguments are the values cor-
responding to the seven constructors. Note that number_of_day weekday.sunday evaluates to 1: the computation
rule for rec_on recognizes that sunday is a constructor, and returns the appropriate argument.
Below we will encounter a more restricted variant of rec_on, namely, cases_on. When it comes to enumerated types,
rec_on and cases_on are the same. Youmay prefer to use the label cases_on, because it emphasizes that the definition
is really a definition by cases.

def number_of_day (d : weekday) : N :=

weekday.cases_on d 1 2 3 4 5 6 7

It is often useful to group definitions and theorems related to a structure in a namespace with the same name. For example,
we can put the number_of_day function in the weekday namespace. We are then allowed to use the shorter name when
we open the namespace.

96 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

The names rec_on and cases_on are generated automatically. As noted above, they are protected to avoid name
clashes. In other words, they are not provided by default when the namespace is opened. However, you can explicitly
declare abbreviations for them using the renaming option when you open a namespace.

namespace weekday

@[reducible]

private def cases_on := @weekday.cases_on

def number_of_day (d : weekday) : nat :=

cases_on d 1 2 3 4 5 6 7

end weekday

#reduce weekday.number_of_day weekday.sunday

open weekday (renaming cases_on → cases_on)

#reduce number_of_day sunday

#check cases_on

We can define functions from weekday to weekday:

namespace weekday

def next (d : weekday) : weekday :=

weekday.cases_on d monday tuesday wednesday thursday friday

saturday sunday

def previous (d : weekday) : weekday :=

weekday.cases_on d saturday sunday monday tuesday wednesday

thursday friday

#reduce next (next tuesday)

#reduce next (previous tuesday)

example : next (previous tuesday) = tuesday := rfl

end weekday

How can we prove the general theorem that next (previous d) = d for any weekday d? The induction principle
parallels the recursion principle: we simply have to provide a proof of the claim for each constructor:

theorem next_previous (d: weekday) :

next (previous d) = d :=

weekday.cases_on d

(show next (previous sunday) = sunday, from rfl)

(show next (previous monday) = monday, from rfl)

(show next (previous tuesday) = tuesday, from rfl)

(show next (previous wednesday) = wednesday, from rfl)

(show next (previous thursday) = thursday, from rfl)

(show next (previous friday) = friday, from rfl)

(show next (previous saturday) = saturday, from rfl)

While the show commands make the proof clearer and more readable, they are not necessary:

theorem next_previous (d: weekday) :

next (previous d) = d :=

(continues on next page)

7.1. Enumerated Types 97

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
weekday.cases_on d rfl rfl rfl rfl rfl rfl rfl

Using a tactic proof, we can be even more concise:

theorem next_previous (d: weekday) :

next (previous d) = d :=

by apply weekday.cases_on d; refl

Section 7.6 below will introduce additional tactics that are specifically designed to make use of inductive types.
Notice that, under the propositions-as-types correspondence, we can use cases_on to prove theorems as well as define
functions. In fact, we could equally well have used rec_on:

theorem next_previous (d: weekday) :

next (previous d) = d :=

by apply weekday.rec_on d; refl

In other words, under the propositions-as-types correspondence, the proof by cases is a kind of definition by recursion,
where what is being “defined” is a proof instead of a piece of data.
Some fundamental data types in the Lean library are instances of enumerated types.

namespace hidden

inductive empty : Type

inductive unit : Type

| star : unit

inductive bool : Type

| ff : bool

| tt : bool

end hidden

(To run these examples, we put them in a namespace called hidden, so that a name like bool does not conflict with the
bool in the standard library. This is necessary because these types are part of the Lean “prelude” that is automatically
imported when the system is started.)
The type empty is an inductive data type with no constructors. The type unit has a single element, star, and the type
bool represents the familiar boolean values. As an exercise, you should think about what the introduction and elimination
rules for these types do. As a further exercise, we suggest defining boolean operations band, bor, bnot on the boolean,
and verifying common identities. Note that you can define a binary operation like band using a case split:

def band (b1 b2 : bool) : bool :=

bool.cases_on b1 ff b2

Similarly, most identities can be proved by introducing suitable case splits, and then using rfl.

7.2 Constructors with Arguments
Enumerated types are a very special case of inductive types, in which the constructors take no arguments at all. In general,
a “construction” can depend on data, which is then represented in the constructed argument. Consider the definitions of
the product type and sum type in the library:

98 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

universes u v

inductive prod (α : Type u) (β : Type v)

| mk : α → β → prod

inductive sum (α : Type u) (β : Type v)

| inl : α → sum

| inr : β → sum

Notice that we do not include the types α and β in the target of the constructors. In the meanwhile, think about what
is going on in these examples. The product type has one constructor, prod.mk, which takes two arguments. To define
a function on prod α β, we can assume the input is of the form prod.mk a b, and we have to specify the output,
in terms of a and b. We can use this to define the two projections for prod. Remember that the standard library defines
notation α × β for prod α β and (a, b) for prod.mk a b.

def fst {α : Type u} {β : Type v} (p : α × β) : α :=

prod.rec_on p (λ a b, a)

def snd {α : Type u} {β : Type v} (p : α × β) : β :=

prod.rec_on p (λ a b, b)

The function fst takes a pair, p. Applying the recursor prod.rec_on p (λ a b, a) interprets p as a pair, prod.mk
a b, and then uses the second argument to determine what to do with a and b. Remember that you can enter the symbol
for a product by typing \times. Recall also from Section 2.8 that to give these definitions the greatest generality possible,
we allow the types α and β to belong to any universe.
Here is another example:

def prod_example (p : bool × N) : N :=

prod.rec_on p (λ b n, cond b (2 * n) (2 * n + 1))

#reduce prod_example (tt, 3)

#reduce prod_example (ff, 3)

The cond function is a boolean conditional: cond b t1 t2 returns t1 if b is true, and t2 otherwise. (It has the same
effect as bool.rec_on b t2 t1.) The function prod_example takes a pair consisting of a boolean, b, and a number,
n, and returns either 2 * n or 2 * n + 1 according to whether b is true or false.
In contrast, the sum type has two constructors, inl and inr (for “insert left” and “insert right”), each of which takes one
(explicit) argument. To define a function on sum α β, we have to handle two cases: either the input is of the form inl

a, in which case we have to specify an output value in terms of a, or the input is of the form inr b, in which case we
have to specify an output value in terms of b.

def sum_example (s : N ⊕ N) : N :=

sum.cases_on s (λ n, 2 * n) (λ n, 2 * n + 1)

#reduce sum_example (sum.inl 3)

#reduce sum_example (sum.inr 3)

This example is similar to the previous one, but now an input to sum_example is implicitly either of the form inl n

or inr n. In the first case, the function returns 2 * n, and the second case, it returns 2 * n + 1. You can enter the
symbol for the sum by typing \oplus.
Notice that the product type depends on parameters α β : Type which are arguments to the constructors as well as
prod. Lean detects when these arguments can be inferred from later arguments to a constructor or the return type, and
makes them implicit in that case.

7.2. Constructors with Arguments 99

Theorem Proving in Lean, Release 3.23.0

In the section after next we will see what happens when the constructor of an inductive type takes arguments from
the inductive type itself. What characterizes the examples we consider in this section is that this is not the case: each
constructor relies only on previously specified types.
Notice that a type with multiple constructors is disjunctive: an element of sum α β is either of the form inl a or of
the form inl b. A constructor with multiple arguments introduces conjunctive information: from an element prod.mk
a b of prod α β we can extract a and b. An arbitrary inductive type can include both features, by having any number
of constructors, each of which takes any number of arguments.
As with function definitions, Lean’s inductive definition syntax will let you put named arguments to the constructors before
the colon:

universes u v

inductive prod (α : Type u) (β : Type v)

| mk (fst : α) (snd : β) : prod

inductive sum (α : Type u) (β : Type v)

| inl {} (a : α) : sum

| inr {} (b : β) : sum

The results of these definitions are essentially the same as the ones given earlier in this section. Note that in the definition
of sum, the annotation {} refers to the parameters, α and β. As with function definitions, you can use curly braces to
specify which arguments are meant to be left implicit.
A type, like prod, that has only one constructor is purely conjunctive: the constructor simply packs the list of arguments
into a single piece of data, essentially a tuple where the type of subsequent arguments can depend on the type of the initial
argument. We can also think of such a type as a “record” or a “structure”. In Lean, the keyword structure can be used
to define such an inductive type as well as its projections, at the same time.

structure prod (α β : Type*) :=

mk :: (fst : α) (snd : β)

This example simultaneously introduces the inductive type, prod, its constructor, mk, the usual eliminators (rec and
rec_on), as well as the projections, fst and snd, as defined above.
If you do not name the constructor, Lean uses mk as a default. For example, the following defines a record to store a color
as a triple of RGB values:

structure color := (red : nat) (green : nat) (blue : nat)

def yellow := color.mk 255 255 0

#reduce color.red yellow

The definition of yellow forms the record with the three values shown, and the projection color.red returns the red
component. The structure command is especially useful for defining algebraic structures, and Lean provides substantial
infrastructure to support working with them. Here, for example, is the definition of a semigroup:

universe u

structure Semigroup :=

(carrier : Type u)

(mul : carrier → carrier → carrier)

(mul_assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

We will see more examples in Chapter 9.
We have already discussed sigma types, also known as the dependent product:

100 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

inductive sigma {α : Type u} (β : α → Type v)

| dpair : Π a : α, β a → sigma

Two more examples of inductive types in the library are the following:

inductive option (α : Type*)

| none {} : option

| some : α → option

inductive inhabited (α : Type*)

| mk : α → inhabited

In the semantics of dependent type theory, there is no built-in notion of a partial function. Every element of a function
type α → β or a Pi type Π x : α, β is assumed to have a value at every input. The option type provides a way of
representing partial functions. An element of option β is either none or of the form some b, for some value b : β.
Thus we can think of an element f of the type α → option β as being a partial function from α to β: for every a :

α, f a either returns none, indicating the f a is “undefined”, or some b.
An element of inhabited α is simply a witness to the fact that there is an element of α. Later, we will see that
inhabited is an example of a type class in Lean: Lean can be instructed that suitable base types are inhabited, and can
automatically infer that other constructed types are inhabited on that basis.
As exercises, we encourage you to develop a notion of composition for partial functions from α to β and β to γ, and show
that it behaves as expected. We also encourage you to show that bool and nat are inhabited, that the product of two
inhabited types is inhabited, and that the type of functions to an inhabited type is inhabited.

7.3 Inductively Defined Propositions
Inductively defined types can live in any type universe, including the bottom-most one, Prop. In fact, this is exactly how
the logical connectives are defined.

inductive false : Prop

inductive true : Prop

| intro : true

inductive and (a b : Prop) : Prop

| intro : a → b → and

inductive or (a b : Prop) : Prop

| intro_left : a → or

| intro_right : b → or

You should think about how these give rise to the introduction and elimination rules that you have already seen. There are
rules that govern what the eliminator of an inductive type can eliminate to, that is, what kinds of types can be the target
of a recursor. Roughly speaking, what characterizes inductive types in Prop is that one can only eliminate to other types
in Prop. This is consistent with the understanding that if p : Prop, an element hp : p carries no data. There is a
small exception to this rule, however, which we will discuss below, in the section on inductive families.
Even the existential quantifier is inductively defined:

inductive Exists {α : Type*} (q : α → Prop) : Prop

| intro : ∀ (a : α), q a → Exists

(continues on next page)

7.3. Inductively Defined Propositions 101

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

def exists.intro := @Exists.intro

Keep in mind that the notation ∃ x : α, p is syntactic sugar for Exists (λ x : α, p).
The definitions of false, true, and, and or are perfectly analogous to the definitions of empty, unit, prod, and sum.
The difference is that the first group yields elements of Prop, and the second yields elements of Type u for some u. In
a similar way, ∃ x : α, p is a Prop-valued variant of Σ x : α, p.
This is a good place to mention another inductive type, denoted {x : α // p}, which is sort of a hybrid between ∃ x

: α, P and Σ x : α, P.

inductive subtype {α : Type*} (p : α → Prop)

| mk : Π x : α, p x → subtype

In fact, in Lean, subtype is defined using the structure command:

structure subtype {α : Sort u} (p : α → Prop) :=

(val : α) (property : p val)

section

variables {α : Type u} (p : α → Prop)

#check subtype p

#check { x : α // p x}

end

The notation {x : α // p x} is syntactic sugar for subtype (λ x : α, p x). It is modeled after subset notation
in set theory: the idea is that {x : α // p x} denotes the collection of elements of α that have property p.

7.4 Defining the Natural Numbers
The inductively defined types we have seen so far are “flat”: constructors wrap data and insert it into a type, and the
corresponding recursor unpacks the data and acts on it. Things get much more interesting when the constructors act on
elements of the very type being defined. A canonical example is the type nat of natural numbers:

inductive nat : Type

| zero : nat

| succ : nat → nat

There are two constructors. We start with zero : nat; it takes no arguments, so we have it from the start. In contrast,
the constructor succ can only be applied to a previously constructed nat. Applying it to zero yields succ zero :

nat. Applying it again yields succ (succ zero) : nat, and so on. Intuitively, nat is the “smallest” type with these
constructors, meaning that it is exhaustively (and freely) generated by starting with zero and applying succ repeatedly.
As before, the recursor for nat is designed to define a dependent function f from nat to any domain, that is, an element
f of Π n : nat, C n for some C : nat → Type. It has to handle two cases: the case where the input is zero,
and the case where the input is of the form succ n for some n : nat. In the first case, we simply specify a target
value with the appropriate type, as before. In the second case, however, the recursor can assume that a value of f at n
has already been computed. As a result, the next argument to the recursor specifies a value for f (succ n) in terms of
n and f n. If we check the type of the recursor,

#check @nat.rec_on

102 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

we find the following:

Π {C : nat → Type*} (n : nat),

C nat.zero → (Π (a : nat), C a → C (nat.succ a)) → C n

The implicit argument, C, is the codomain of the function being defined. In type theory it is common to say C is themotive
for the elimination/recursion, since it describes the kind of object we wish to construct. The next argument, n : nat,
is the input to the function. It is also known as the major premise. Finally, the two arguments after specify how to
compute the zero and successor cases, as described above. They are also known as the minor premises.
Consider, for example, the addition function add m n on the natural numbers. Fixing m, we can define addition by
recursion on n. In the base case, we set add m zero to m. In the successor step, assuming the value add m n is already
determined, we define add m (succ n) to be succ (add m n).

namespace nat

def add (m n : nat) : nat :=

nat.rec_on n m (λ n add_m_n, succ add_m_n)

-- try it out

#reduce add (succ zero) (succ (succ zero))

end nat

It is useful to put such definitions into a namespace, nat. We can then go on to define familiar notation in that namespace.
The two defining equations for addition now hold definitionally:

instance : has_zero nat := has_zero.mk zero

instance : has_add nat := has_add.mk add

theorem add_zero (m : nat) : m + 0 = m := rfl

theorem add_succ (m n : nat) : m + succ n = succ (m + n) := rfl

Wewill explain how the instance command works in Chapter 10. In the examples below, we will henceforth use Lean’s
version of the natural numbers.
Proving a fact like 0 + m = m, however, requires a proof by induction. As observed above, the induction principle is
just a special case of the recursion principle, when the codomain C n is an element of Prop. It represents the familiar
pattern of an inductive proof: to prove ∀ n, C n, first prove C 0, and then, for arbitrary n, assume ih : C n and
prove C (succ n).

theorem zero_add (n : N) : 0 + n = n :=

nat.rec_on n

(show 0 + 0 = 0, from rfl)

(assume n,

assume ih : 0 + n = n,

show 0 + succ n = succ n, from

calc

0 + succ n = succ (0 + n) : rfl

... = succ n : by rw ih)

Notice that, once again, when nat.rec_on is used in the context of a proof, it is really the induction principle in disguise.
The rewrite and simp tactics tend to be very effective in proofs like these. In this case, each can be used to reduce the
proof to a one-liner:

7.4. Defining the Natural Numbers 103

Theorem Proving in Lean, Release 3.23.0

theorem zero_add (n : N) : 0 + n = n :=

nat.rec_on n rfl (λ n ih, by rw [add_succ, ih])

theorem zero_add' (n : N) : 0 + n = n :=

nat.rec_on n rfl (λ n ih, by simp only [add_succ, ih])

The second example would be misleading without the only modifier, because zero_add is in fact declared to be a
simplification rule in the standard library. Using only guarantees that simp only uses the identities listed.
For another example, let us prove the associativity of addition, ∀ m n k, m + n + k = m + (n + k). (The notation
+, as we have defined it, associates to the left, so m + n + k is really (m + n) + k.) The hardest part is figuring out
which variable to do the induction on. Since addition is defined by recursion on the second argument, k is a good guess,
and once we make that choice the proof almost writes itself:

theorem add_assoc (m n k : N) : m + n + k = m + (n + k) :=

nat.rec_on k

(show m + n + 0 = m + (n + 0), from rfl)

(assume k,

assume ih : m + n + k = m + (n + k),

show m + n + succ k = m + (n + succ k), from

calc

m + n + succ k = succ (m + n + k) : rfl

... = succ (m + (n + k)) : by rw ih

... = m + succ (n + k) : rfl

... = m + (n + succ k) : rfl)

One again, there is a one-line proof:

theorem add_assoc (m n k : N) : m + n + k = m + (n + k) :=

nat.rec_on k rfl (λ k ih, by simp only [add_succ, ih])

Suppose we try to prove the commutativity of addition. Choosing induction on the second argument, we might begin as
follows:

theorem add_comm (m n : nat) : m + n = n + m :=

nat.rec_on n

(show m + 0 = 0 + m, by rw [nat.zero_add, nat.add_zero])

(assume n,

assume ih : m + n = n + m,

calc

m + succ n = succ (m + n) : rfl

... = succ (n + m) : by rw ih

... = succ n + m : sorry)

At this point, we see that we need another supporting fact, namely, that succ (n + m) = succ n + m. We can prove
this by induction on m:

theorem succ_add (m n : nat) : succ m + n = succ (m + n) :=

nat.rec_on n

(show succ m + 0 = succ (m + 0), from rfl)

(assume n,

assume ih : succ m + n = succ (m + n),

show succ m + succ n = succ (m + succ n), from

calc

(continues on next page)

104 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
succ m + succ n = succ (succ m + n) : rfl

... = succ (succ (m + n)) : by rw ih

... = succ (m + succ n) : rfl)

We can then replace the sorry in the previous proof with succ_add. Yet again, the proofs can be compressed:

theorem add_assoc (m n k : N) : m + n + k = m + (n + k) :=

nat.rec_on k rfl (λ k ih, by simp only [add_succ, ih])

theorem succ_add (m n : nat) : succ m + n = succ (m + n) :=

nat.rec_on n rfl (λ n ih, by simp only [add_succ, ih])

theorem add_comm (m n : nat) : m + n = n + m :=

nat.rec_on n

(by simp only [zero_add, add_zero])

(λ n ih, by simp only [add_succ, ih, succ_add])

7.5 Other Recursive Data Types
Let us consider some more examples of inductively defined types. For any type, α, the type list α of lists of elements
of α is defined in the library.

inductive list (α : Type*)

| nil {} : list

| cons : α → list → list

namespace list

variable {α : Type*}

notation (name := cons) h :: t := cons h t

def append (s t : list α) : list α :=

list.rec t (λ x l u, x::u) s

notation (name := append) s ++ t := append s t

theorem nil_append (t : list α) : nil ++ t = t := rfl

theorem cons_append (x : α) (s t : list α) :

x::s ++ t = x::(s ++ t) := rfl

end list

A list of elements of type α is either the empty list, nil, or an element h : α followed by a list t : list α. We
define the notation h :: t to represent the latter. The first element, h, is commonly known as the “head” of the list, and
the remainder, t, is known as the “tail.” Recall that the notation {} in the definition of the inductive type ensures that the
argument to nil is implicit. In most cases, it can be inferred from context. When it cannot, we have to write @nil α to
specify the type α.
Lean allows us to define iterative notation for lists:

7.5. Other Recursive Data Types 105

Theorem Proving in Lean, Release 3.23.0

inductive list (α : Type*)

| nil {} : list

| cons : α → list → list

namespace list

notation (name := list) `[` l:(foldr `,` (h t, cons h t) nil) `]` := l

section

open nat

#check [1, 2, 3, 4, 5]

#check ([1, 2, 3, 4, 5] : list int)

end

end list

In the first #check, Lean assumes that [1, 2, 3, 4, 5] is a list of natural numbers. The (t : list int)

expression forces Lean to interpret t as a list of integers.
As an exercise, prove the following:

theorem append_nil (t : list α) : t ++ nil = t := sorry

theorem append_assoc (r s t : list α) :

r ++ s ++ t = r ++ (s ++ t) := sorry

Try also defining the function length : Π {α : Type*}, list α → nat that returns the length of a list, and
prove that it behaves as expected (for example, length (s ++ t) = length s + length t).
For another example, we can define the type of binary trees:

inductive binary_tree

| leaf : binary_tree

| node : binary_tree → binary_tree → binary_tree

In fact, we can even define the type of countably branching trees:

inductive cbtree

| leaf : cbtree

| sup : (N → cbtree) → cbtree

namespace cbtree

def succ (t : cbtree) : cbtree :=

sup (λ n, t)

def omega : cbtree :=

sup (λ n, nat.rec_on n leaf (λ n t, succ t))

end cbtree

106 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

7.6 Tactics for Inductive Types
Given the fundamental importance of inductive types in Lean, it should not be surprising that there are a number of tactics
designed to work with them effectively. We describe some of them here.
The cases tactic works on elements of an inductively defined type, and does what the name suggests: it decomposes the
element according to each of the possible constructors. In its most basic form, it is applied to an element x in the local
context. It then reduces the goal to cases in which x is replaced by each of the constructions.

open nat

variable p : N → Prop

example (hz : p 0) (hs : ∀ n, p (succ n)) : ∀ n, p n :=

begin

intro n,

cases n,

{ exact hz }, -- goal is p 0

apply hs -- goal is a : N ` p (succ a)

end

There are extra bells and whistles. For one thing, cases allows you to choose the names for the arguments to the
constructors using a with clause. In the next example, for example, we choose the name m for the argument to succ,
so that the second case refers to succ m. More importantly, the cases tactic will detect any items in the local context
that depend on the target variable. It reverts these elements, does the split, and reintroduces them. In the example below,
notice that the hypothesis h : n 6= 0 becomes h : 0 6= 0 in the first branch, and h : succ m 6= 0 in the second.

open nat

example (n : N) (h : n 6= 0) : succ (pred n) = n :=

begin

cases n with m,

-- first goal: h : 0 6= 0 ` succ (pred 0) = 0

{ apply (absurd rfl h) },

-- second goal: h : succ m 6= 0 ` succ (pred (succ m)) = succ m

reflexivity

end

Notice that cases can be used to produce data as well as prove propositions.

def f (n : N) : N :=

begin

cases n, exact 3, exact 7

end

example : f 0 = 3 := rfl

example : f 5 = 7 := rfl

Once again, cases will revert, split, and then reintroduce dependencies in the context.

def tuple (α : Type*) (n : N) :=

{ l : list α // list.length l = n }

variables {α : Type*} {n : N}

(continues on next page)

7.6. Tactics for Inductive Types 107

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
def f {n : N} (t : tuple α n) : N :=

begin

cases n, exact 3, exact 7

end

def my_tuple : tuple N 3 := 〈[0, 1, 2], rfl〉

example : f my_tuple = 7 := rfl

If there aremultiple constructors with arguments, you can provide caseswith a list of all the names, arranged sequentially:

inductive foo : Type

| bar1 : N → N → foo

| bar2 : N → N → N → foo

def silly (x : foo) : N :=

begin

cases x with a b c d e,

exact b, -- a, b are in the context

exact e -- c, d, e are in the context

end

The syntax of the with is unfortunate, in that we have to list the arguments to all the constructors sequentially, making
it hard to remember what the constructors are, or what the arguments are supposed to be. For that reason, Lean provides
a complementary case tactic, which allows one to assign variable names after the fact:

inductive foo : Type

| bar1 : N → N → foo

| bar2 : N → N → N → foo

open foo

def silly (x : foo) : N :=

begin

cases x,

case bar1 : a b

{ exact b },

case bar2 : c d e

{ exact e }

end

The case tactic is clever, in that it will match the constructor to the appropriate goal. For example, we can fill the goals
above in the opposite order:

inductive foo : Type

| bar1 : N → N → foo

| bar2 : N → N → N → foo

open foo

def silly (x : foo) : N :=

begin

cases x,
(continues on next page)

108 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
case bar2 : c d e

{ exact e },

case bar1 : a b

{ exact b }

end

You can also use cases with an arbitrary expression. Assuming that expression occurs in the goal, the cases tactic will
generalize over the expression, introduce the resulting universally quantified variable, and case on that.

open nat

variable p : N → Prop

example (hz : p 0) (hs : ∀ n, p (succ n)) (m k : N) :

p (m + 3 * k) :=

begin

cases (m + 3 * k),

{ exact hz }, -- goal is p 0

apply hs -- goal is a : N ` p (succ a)

end

Think of this as saying “split on cases as to whether m + 3 * k is zero or the successor of some number.” The result is
functionally equivalent to the following:

example (hz : p 0) (hs : ∀ n, p (succ n)) (m k : N) :

p (m + 3 * k) :=

begin

generalize : m + 3 * k = n,

cases n,

{ exact hz }, -- goal is p 0

apply hs -- goal is a : N ` p (succ a)

end

Notice that the expression m + 3 * k is erased by generalize; all that matters is whether it is of the form 0 or succ a.
This form of cases will not revert any hypotheses that also mention the expression in equation (in this case, m + 3 *

k). If such a term appears in a hypothesis and you want to generalize over that as well, you need to revert it explicitly.
If the expression you case on does not appear in the goal, the cases tactic uses have to put the type of the expression
into the context. Here is an example:

example (p : Prop) (m n : N)
(h1 : m < n → p) (h2 : m ≥ n → p) : p :=

begin

cases lt_or_ge m n with hlt hge,

{ exact h1 hlt },

exact h2 hge

end

The theorem lt_or_ge m n says m < n ∨ m ≥ n, and it is natural to think of the proof above as splitting on these
two cases. In the first branch, we have the hypothesis h1 : m < n, and in the second we have the hypothesis h2 : m

≥ n. The proof above is functionally equivalent to the following:

example (p : Prop) (m n : N)
(h1 : m < n → p) (h2 : m ≥ n → p) : p :=

(continues on next page)

7.6. Tactics for Inductive Types 109

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
begin

have h : m < n ∨ m ≥ n,

{ exact lt_or_ge m n },

cases h with hlt hge,

{ exact h1 hlt },

exact h2 hge

end

After the first two lines, we have h : m < n ∨ m ≥ n as a hypothesis, and we simply do cases on that.
Here is another example, where we use the decidability of equality on the natural numbers to split on the cases m = n

and m 6= n.

#check nat.sub_self

example (m n : N) : m - n = 0 ∨ m 6= n :=

begin

cases decidable.em (m = n) with heq hne,

{ rw heq,

left, exact nat.sub_self n },

right, exact hne

end

Remember that if you open classical, you can use the law of the excluded middle for any proposition at all. But
using type class inference (see Chapter 10), Lean can actually find the relevant decision procedure, which means that you
can use the case split in a computable function.

def f (m k : N) : N :=

begin

cases m - k, exact 3, exact 7

end

example : f 5 7 = 3 := rfl

example : f 10 2 = 7 := rfl

Aspects of computability will be discussed in Chapter 11.
Just as the cases tactic can be used to carry out proof by cases, the induction tactic can be used to carry out proofs
by induction. The syntax is similar to that of cases, except that the argument can only be a term in the local context.
Here is an example:

theorem zero_add (n : N) : 0 + n = n :=

begin

induction n with n ih,

refl,

rw [add_succ, ih]

end

As with cases, we can use the case tactic instead to identify one case at a time and name the arguments:

theorem zero_add (n : N) : 0 + n = n :=

begin

induction n,

case zero : { refl },

(continues on next page)

110 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
case succ : n ih { rw [add_succ, ih]}

end

theorem succ_add (m n : N) : succ m + n = succ (m + n) :=

begin

induction n,

case zero : { refl },

case succ : n ih { rw [add_succ, add_succ, ih] }

end

theorem add_comm (m n : N) : m + n = n + m :=

begin

induction n,

case zero : { rw zero_add, refl },

case succ : n ih { rw [add_succ, ih, succ_add] }

end

The name before the colon corresponds to the constructor of the associated inductive type. The cases can appear in any
order, and when there are no parameters to rename (for example, as in the zero cases above) the colon can be omitted.
Once again, we can reduce the proofs of these, as well as the proof of associativity, to one-liners.

theorem zero_add (n : N) : 0 + n = n :=

by induction n; simp only [*, add_zero, add_succ]

theorem succ_add (m n : N) : succ m + n = succ (m + n) :=

by induction n; simp only [*, add_zero, add_succ]

theorem add_comm (m n : N) : m + n = n + m :=

by induction n;

simp only [*, add_zero, add_succ, succ_add, zero_add]

theorem add_assoc (m n k : N) : m + n + k = m + (n + k) :=

by induction k; simp only [*, add_zero, add_succ]

Weclose this sectionwith one last tactic that is designed to facilitate working with inductive types, namely, the injection
tactic. By design, the elements of an inductive type are freely generated, which is to say, the constructors are injective
and have disjoint ranges. The injection tactic is designed to make use of this fact:

open nat

example (m n k : N) (h : succ (succ m) = succ (succ n)) :

n + k = m + k :=

begin

injection h with h',

injection h' with h'',

rw h''

end

The first instance of the tactic adds h' : succ m = succ n to the context, and the second adds h'' : m = n.
The plural variant, injections, applies injection to all hypotheses repeatedly. It still allows you to name the results
using with.

7.6. Tactics for Inductive Types 111

Theorem Proving in Lean, Release 3.23.0

example (m n k : N) (h : succ (succ m) = succ (succ n)) :

n + k = m + k :=

begin

injections with h' h'',

rw h''

end

example (m n k : N) (h : succ (succ m) = succ (succ n)) :

n + k = m + k :=

by injections; simp *

The injection and injections tactics will also detect contradictions that arise when different constructors are set
equal to one another, and use them to close the goal.

example (m n : N) (h : succ m = 0) : n = n + 7 :=

by injections

example (m n : N) (h : succ m = 0) : n = n + 7 :=

by contradiction

example (h : 7 = 4) : false :=

by injections

As the second example shows, the contradiction tactic also detects contradictions of this form. But the contra-
diction tactic does not solve the third goal, while injections does.

7.7 Inductive Families
We are almost done describing the full range of inductive definitions accepted by Lean. So far, you have seen that Lean
allows you to introduce inductive types with any number of recursive constructors. In fact, a single inductive definition
can introduce an indexed family of inductive types, in a manner we now describe.
An inductive family is an indexed family of types defined by a simultaneous induction of the following form:

inductive foo : ... → Sort u :=

| constructor1 : ... → foo ...

| constructor2 : ... → foo ...

...

| constructorn : ... → foo ...

In contrast to ordinary inductive definition, which constructs an element of some Sort u, the more general version
constructs a function ... → Sort u, where “...” denotes a sequence of argument types, also known as indices. Each
constructor then constructs an element of some member of the family. One example is the definition of vector α n,
the type of vectors of elements of α of length n:

inductive vector (α : Type u) : nat → Type u

| nil {} : vector zero

| cons {n : N} (a : α) (v : vector n) : vector (succ n)

Notice that the cons constructor takes an element of vector α n and returns an element of vector α (succ n),
thereby using an element of one member of the family to build an element of another.
A more exotic example is given by the definition of the equality type in Lean:

112 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

inductive eq {α : Sort u} (a : α) : α → Prop

| refl [] : eq a

For each fixed α : Sort u and a : α, this definition constructs a family of types eq a x, indexed by x : α.
Notably, however, there is only one constructor, refl, which is an element of eq a a, and the square brackets after the
constructor tell Lean to make the argument to refl explicit. Intuitively, the only way to construct a proof of eq a x is
to use reflexivity, in the case where x is a. Note that eq a a is the only inhabited type in the family of types eq a x.
The elimination principle generated by Lean is as follows:

universes u v

#check (@eq.rec_on :

Π {α : Sort u} {a : α} {C : α → Sort v} {b : α},
a = b → C a → C b)

It is a remarkable fact that all the basic axioms for equality follow from the constructor, refl, and the eliminator, eq.
rec_on. The definition of equality is atypical, however; see the discussion in the next section.
The recursor eq.rec_on is also used to define substitution:

@[elab_as_eliminator]

theorem subst {α : Type u} {a b : α} {p : α → Prop}

(h1 : eq a b) (h2 : p a) : p b :=

eq.rec h2 h1

Using the recursor with h1 : a = b, we may assume a and b are the same, in which case, p b and p a are the same.
The definition of subst is marked with an elaboration hint, as described in Section 6.10.
It is not hard to prove that eq is symmetric and transitive. In the following example, we prove symm and leave as exercise
the theorems trans and congr (congruence).

theorem symm {α : Type u} {a b : α} (h : eq a b) : eq b a :=

subst h (eq.refl a)

theorem trans {α : Type u} {a b c : α}
(h1 : eq a b) (h2 : eq b c) : eq a c :=

sorry

theorem congr {α β : Type u} {a b : α} (f : α → β)
(h : eq a b) : eq (f a) (f b) :=

sorry

In the type theory literature, there are further generalizations of inductive definitions, for example, the principles of
induction-recursion and induction-induction. These are not supported by Lean.

7.8 Axiomatic Details
We have described inductive types and their syntax through examples. This section provides additional information for
those interested in the axiomatic foundations.
We have seen that the constructor to an inductive type takes parameters — intuitively, the arguments that remain fixed
throughout the inductive construction — and indices, the arguments parameterizing the family of types that is simultane-
ously under construction. Each constructor should have a Pi type, where the argument types are built up from previously
defined types, the parameter and index types, and the inductive family currently being defined. The requirement is that if
the latter is present at all, it occurs only strictly positively. This means simply that any argument to the constructor in which

7.8. Axiomatic Details 113

Theorem Proving in Lean, Release 3.23.0

it occurs is a Pi type in which the inductive type under definition occurs only as the resulting type, where the indices are
given in terms of constants and previous arguments.
Since an inductive type lives in Sort u for some u, it is reasonable to ask which universe levels u can be instantiated to.
Each constructor c in the definition of a family C of inductive types is of the form

c : Π (a : α) (b : β[a]), C a p[a,b]

where a is a sequence of data type parameters, b is the sequence of arguments to the constructors, and p[a, b] are the
indices, which determine which element of the inductive family the construction inhabits. (Note that this description is
somewhat misleading, in that the arguments to the constructor can appear in any order as long as the dependencies make
sense.) The constraints on the universe level of C fall into two cases, depending on whether or not the inductive type is
specified to land in Prop (that is, Sort 0).
Let us first consider the case where the inductive type is not specified to land in Prop. Then the universe level u is
constrained to satisfy the following:

For each constructor c as above, and each βk[a] in the sequence β[a], if βk[a] : Sort v, we have u
≥ v.

In other words, the universe level u is required to be at least as large as the universe level of each type that represents an
argument to a constructor.
When the inductive type is specified to land in Prop, there are no constraints on the universe levels of the constructor
arguments. But these universe levels do have a bearing on the elimination rule. Generally speaking, for an inductive type
in Prop, the motive of the elimination rule is required to be in Prop.
There is an exception to this last rule: we are allowed to eliminate from an inductively defined Prop to an arbitrary Sort
when there is only one constructor and each constructor argument is either in Prop or an index. The intuition is that in
this case the elimination does not make use of any information that is not already given by the mere fact that the type of
argument is inhabited. This special case is known as singleton elimination.
We have already seen singleton elimination at play in applications of eq.rec, the eliminator for the inductively defined
equality type. We can use an element h : eq a b to cast an element t' : p a to p b even when p a and p b

are arbitrary types, because the cast does not produce new data; it only reinterprets the data we already have. Singleton
elimination is also used with heterogeneous equality and well-founded recursion, which will be discussed in a later chapter.

7.9 Mutual and Nested Inductive Types
We now consider two generalizations of inductive types that are often useful, which Lean supports by “compiling” them
down to the more primitive kinds of inductive types described above. In other words, Lean parses the more general
definitions, defines auxiliary inductive types based on them, and then uses the auxiliary types to define the ones we
really want. Lean’s equation compiler, described in the next chapter, is needed to make use of these types effectively.
Nonetheless, it makes sense to describe the declarations here, because they are straightforward variations on ordinary
inductive definitions.
First, Lean supports mutually defined inductive types. The idea is that we can define two (or more) inductive types at the
same time, where each one refers to the other(s).

mutual inductive even, odd

with even : N → Prop

| even_zero : even 0

| even_succ : ∀ n, odd n → even (n + 1)

with odd : N → Prop

| odd_succ : ∀ n, even n → odd (n + 1)

In this example, two types are defined simultaneously: a natural number n is even if it is 0 or one more than an odd
number, and odd if it is one more than an even number. Under the hood, this definition is compiled down to a single

114 Chapter 7. Inductive Types

Theorem Proving in Lean, Release 3.23.0

inductive type with an index i in a two-valued type (such as bool), where i encodes which of even or odd is intended.
In the exercises below, you are asked to spell out the details.
A mutual inductive definition can also be used to define the notation of a finite tree with nodes labeled by elements of α:

universe u

mutual inductive tree, list_tree (α : Type u)

with tree : Type u

| node : α → list_tree → tree

with list_tree : Type u

| nil {} : list_tree

| cons : tree → list_tree → list_tree

With this definition, one can construct an element of tree α by giving an element of α together with a list of subtrees,
possibly empty. The list of subtrees is represented by the type list_tree α, which is defined to be either the empty
list, nil, or the cons of a tree and an element of list_tree α.
This definition is inconvenient to work with, however. It would be much nicer if the list of subtrees were given by the
type list (tree α), especially since Lean’s library contains a number of functions and theorems for working with
lists. One can show that the type list_tree α is isomorphic to list (tree α), but translating results back and forth
along this isomorphism is tedious.
In fact, Lean allows us to define the inductive type we really want:

inductive tree (α : Type u)

| mk : α → list tree → tree

This is known as a nested inductive type. It falls outside the strict specification of an inductive type given in the last
section because tree does not occur strictly positively among the arguments to mk, but, rather, nested inside the list
type constructor. Under the hood, Lean compiles this down to the mutual inductive type described above, which, in turn,
is compiled down to an ordinary inductive type. Lean then automatically builds the isomorphism between list_tree
α and list (tree α), and defines the constructors for tree in terms of the isomorphism.
The types of the constructors for mutual and nested inductive types can be read off from the definitions. Defining functions
from such types is more complicated, because these also have to be compiled down to more basic operations, making use
of the primitive recursors that are associated to the inductive types that are declared under the hood. Lean does its best
to hide the details from users, allowing them to use the equation compiler, described in the next section, to define such
functions in natural ways.

7.10 Exercises
1. Try defining other operations on the natural numbers, such as multiplication, the predecessor function (with pred

0 = 0), truncated subtraction (with n - m = 0 when m is greater than or equal to n), and exponentiation. Then
try proving some of their basic properties, building on the theorems we have already proved.
Since many of these are already defined in Lean’s core library, you should work within a namespace named hide,
or something like that, in order to avoid name clashes.

2. Define some operations on lists, like a length function or the reverse function. Prove some properties, such as
the following:
a. length (s ++ t) = length s + length t

b. length (reverse t) = length t

c. reverse (reverse t) = t

3. Define an inductive data type consisting of terms built up from the following constructors:

7.10. Exercises 115

Theorem Proving in Lean, Release 3.23.0

• const n, a constant denoting the natural number n
• var n, a variable, numbered n
• plus s t, denoting the sum of s and t
• times s t, denoting the product of s and t

Recursively define a function that evaluates any such term with respect to an assignment of values to the variables.
4. Similarly, define the type of propositional formulas, as well as functions on the type of such formulas: an evaluation

function, functions that measure the complexity of a formula, and a function that substitutes another formula for a
given variable.

5. Simulate the mutual inductive definition of even and odd described in Section 7.9 with an ordinary inductive type,
using an index to encode the choice between them in the target type.

116 Chapter 7. Inductive Types

CHAPTER

EIGHT

INDUCTION AND RECURSION

In the previous chapter, we saw that inductive definitions provide a powerful means of introducing new types in Lean.
Moreover, the constructors and the recursors provide the only means of defining functions on these types. By the
propositions-as-types correspondence, this means that induction is the fundamental method of proof.
Lean provides natural ways of defining recursive functions, performing pattern matching, and writing inductive proofs.
It allows you to define a function by specifying equations that it should satisfy, and it allows you to prove a theorem by
specifying how to handle various cases that can arise. Behind the scenes, these descriptions are “compiled” down to
primitive recursors, using a procedure that we refer to as the “equation compiler.” The equation compiler is not part of
the trusted code base; its output consists of terms that are checked independently by the kernel.

8.1 Pattern Matching
The interpretation of schematic patterns is the first step of the compilation process. We have seen that the cases_on
recursor can be used to define functions and prove theorems by cases, according to the constructors involved in an in-
ductively defined type. But complicated definitions may use several nested cases_on applications, and may be hard to
read and understand. Pattern matching provides an approach that is more convenient, and familiar to users of functional
programming languages.
Consider the inductively defined type of natural numbers. Every natural number is either zero or succ x, and so you
can define a function from the natural numbers to an arbitrary type by specifying a value in each of those cases:

open nat

def sub1 : N → N
| zero := zero

| (succ x) := x

def is_zero : N → Prop

| zero := true

| (succ x) := false

The equations used to define these function hold definitionally:

example : sub1 0 = 0 := rfl

example (x : N) : sub1 (succ x) = x := rfl

example : is_zero 0 = true := rfl

example (x : N) : is_zero (succ x) = false := rfl

example : sub1 7 = 6 := rfl

example (x : N) : ¬ is_zero (x + 3) := not_false

117

Theorem Proving in Lean, Release 3.23.0

Instead of zero and succ, we can use more familiar notation:

open nat

def sub1 : N → N
| 0 := 0

| (x+1) := x

def is_zero : N → Prop

| 0 := true

| (x+1) := false

Because addition and the zero notation have been assigned the [pattern] attribute, they can be used in pattern matching.
Lean simply normalizes these expressions until the constructors zero and succ are exposed.
Pattern matching works with any inductive type, such as products and option types:

universes u v

variables {α : Type u} {β : Type v}

def swap_pair : α × β → β × α
| (a, b) := (b, a)

def foo : N × N → N
| (m, n) := m + n

def bar : option N → N
| (some n) := n + 1

| none := 0

Here we use it not only to define a function, but also to carry out a proof by cases:

def bnot : bool → bool

| tt := ff

| ff := tt

theorem bnot_bnot : ∀ (b : bool), bnot (bnot b) = b

| tt := rfl -- proof that bnot (bnot tt) = tt

| ff := rfl -- proof that bnot (bnot ff) = ff

Pattern matching can also be used to destruct inductively defined propositions:

example (p q : Prop) : p ∧ q → q ∧ p

| (and.intro h1 h2) := and.intro h2 h1

example (p q : Prop) : p ∨ q → q ∨ p

| (or.inl hp) := or.inr hp

| (or.inr hq) := or.inl hq

This provides a compact way of unpacking hypotheses that make use of logical connectives.
In all these examples, pattern matching was used to carry out a single case distinction. More interestingly, patterns can
involve nested constructors, as in the following examples.

118 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

open nat

def sub2 : N → N
| zero := 0

| (succ zero) := 0

| (succ (succ a)) := a

The equation compiler first splits on cases as to whether the input is zero or of the form succ x. It then does a case split
on whether x is of the form zero or succ a. It determines the necessary case splits from the patterns that are presented
to it, and raises and error if the patterns fail to exhaust the cases. Once again, we can use arithmetic notation, as in the
version below. In either case, the defining equations hold definitionally.

def sub2 : N → N
| 0 := 0

| 1 := 0

| (a+2) := a

example : sub2 0 = 0 := rfl

example : sub2 1 = 0 := rfl

example (a : nat) : sub2 (a + 2) = a := rfl

example : sub2 5 = 3 := rfl

You can write #print sub2 to see how the function was compiled to recursors. (Lean will tell you that sub2 has been
defined in terms of an internal auxiliary function, sub2._main, but you can print that out too.)
Here are some more examples of nested pattern matching:

example {α : Type*} (p q : α → Prop) :

(∃ x, p x ∨ q x) → (∃ x, p x) ∨ (∃ x, q x)

| (exists.intro x (or.inl px)) := or.inl (exists.intro x px)

| (exists.intro x (or.inr qx)) := or.inr (exists.intro x qx)

def foo : N × N → N
| (0, n) := 0

| (m+1, 0) := 1

| (m+1, n+1) := 2

The equation compiler can process multiple arguments sequentially. For example, it would be more natural to define the
previous example as a function of two arguments:

def foo : N → N → N
| 0 n := 0

| (m+1) 0 := 1

| (m+1) (n+1) := 2

Here is another example:

def bar : list N → list N → N
| [] [] := 0

| (a :: l) [] := a

| [] (b :: l) := b

| (a :: l) (b :: m) := a + b

Note that, with compound expressions, parentheses are used to separate the arguments.

8.1. Pattern Matching 119

Theorem Proving in Lean, Release 3.23.0

In each of the following examples, splitting occurs on only the first argument, even though the others are included among
the list of patterns.

def band : bool → bool → bool

| tt a := a

| ff _ := ff

def bor : bool → bool → bool

| tt _ := tt

| ff a := a

def {u} cond {a : Type u} : bool → a → a → a

| tt x y := x

| ff x y := y

Notice also that, when the value of an argument is not needed in the definition, you can use an underscore instead. This
underscore is known as a wildcard pattern, or an anonymous variable. In contrast to usage outside the equation compiler,
here the underscore does not indicate an implicit argument. The use of underscores for wildcards is common in functional
programming languages, and so Lean adopts that notation. Section 8.2 expands on the notion of a wildcard, and Section
8.7 explains how you can use implicit arguments in patterns as well.
As described in Chapter 7, inductive data types can depend on parameters. The following example defines the tail
function using pattern matching. The argument α : Type is a parameter and occurs before the colon to indicate it does
not participate in the pattern matching. Lean also allows parameters to occur after :, but it cannot pattern match on them.

def tail1 {α : Type*} : list α → list α
| [] := []

| (h :: t) := t

def tail2 : Π {α : Type*}, list α → list α
| α [] := []

| α (h :: t) := t

Despite the different placement of the parameter α in these two examples, in both cases it treated in the same way, in that
it does not participate in a case split.
Lean can also handle more complex forms of pattern matching, in which arguments to dependent types pose additional
constraints on the various cases. Such examples of dependent pattern matching are considered in Section 8.6.

8.2 Wildcards and Overlapping Patterns
Consider one of the examples from the last section:

def foo : N → N → N
| 0 n := 0

| (m+1) 0 := 1

| (m+1) (n+1) := 2

The example can be written more concisely:

def foo : N → N → N
| 0 n := 0

| m 0 := 1

| m n := 2

120 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

In the second presentation, the patterns overlap; for example, the pair of arguments 0 0 matches all three cases. But
Lean handles the ambiguity by using the first applicable equation, so the net result is the same. In particular, the following
equations hold definitionally:

variables (m n : nat)

example : foo 0 0 = 0 := rfl

example : foo 0 (n+1) = 0 := rfl

example : foo (m+1) 0 = 1 := rfl

example : foo (m+1) (n+1) = 2 := rfl

Since the values of m and n are not needed, we can just as well use wildcard patterns instead.

def foo : N → N → N
| 0 _ := 0

| _ 0 := 1

| _ _ := 2

You can check that this definition of foo satisfies the same definitional identities as before.
Some functional programming languages support incomplete patterns. In these languages, the interpreter produces an
exception or returns an arbitrary value for incomplete cases. We can simulate the arbitrary value approach using the
inhabited type class. Roughly, an element of inhabited α is a witness to the fact that there is an element of α;
in Chapter 10 we will see that Lean can be instructed that suitable base types are inhabited, and can automatically infer
that other constructed types are inhabited on that basis. On this basis, the standard library provides an arbitrary element,
arbitrary α, of any inhabited type.
We can also use the type option α to simulate incomplete patterns. The idea is to return some a for the provided
patterns, and use none for the incomplete cases. The following example demonstrates both approaches.

def f1 : N → N → N
| 0 _ := 1

| _ 0 := 2

| _ _ := arbitrary N -- the "incomplete" case

variables (a b : N)

example : f1 0 0 = 1 := rfl

example : f1 0 (a+1) = 1 := rfl

example : f1 (a+1) 0 = 2 := rfl

example : f1 (a+1) (b+1) = arbitrary nat := rfl

def f2 : N → N → option N
| 0 _ := some 1

| _ 0 := some 2

| _ _ := none -- the "incomplete" case

example : f2 0 0 = some 1 := rfl

example : f2 0 (a+1) = some 1 := rfl

example : f2 (a+1) 0 = some 2 := rfl

example : f2 (a+1) (b+1) = none := rfl

The equation compiler is clever. If you leave out any of the cases in the following definition, the error message will let
you know what has not been covered.

8.2. Wildcards and Overlapping Patterns 121

Theorem Proving in Lean, Release 3.23.0

def bar : N → list N → bool → N
| 0 _ ff := 0

| 0 (b :: _) _ := b

| 0 [] tt := 7

| (a+1) [] ff := a

| (a+1) [] tt := a + 1

| (a+1) (b :: _) _ := a + b

It will also use an “if … then … else” instead of a cases_on in appropriate situations.

def foo : char → N
| 'A' := 1

| 'B' := 2

| _ := 3

#print foo._main

8.3 Structural Recursion and Induction
What makes the equation compiler powerful is that it also supports recursive definitions. In the next three sections, we
will describe, respectively:

• structurally recursive definitions
• well-founded recursive definitions
• mutually recursive definitions

Generally speaking, the equation compiler processes input of the following form:

def foo (a : α) : Π (b : β), γ
| [patterns1] := t1
...

| [patternsn] := tn

Here (a : α) is a sequence of parameters, (b : β) is the sequence of arguments on which pattern matching takes
place, and γ is any type, which can depend on a and b. Each line should contain the same number of patterns, one for
each element of β. As we have seen, a pattern is either a variable, a constructor applied to other patterns, or an expression
that normalizes to something of that form (where the non-constructors are marked with the [pattern] attribute). The
appearances of constructors prompt case splits, with the arguments to the constructors represented by the given variables.
In Section 8.6, we will see that it is sometimes necessary to include explicit terms in patterns that are needed to make an
expression type check, though they do not play a role in pattern matching. These are called “inaccessible terms,” for that
reason. But we will not need to use such inaccessible terms before Section 8.6.
As we saw in the last section, the terms t1, ..., tn can make use of any of the parameters a, as well as any of the
variables that are introduced in the corresponding patterns. What makes recursion and induction possible is that they
can also involve recursive calls to foo. In this section, we will deal with structural recursion, in which the arguments to
foo occurring on the right-hand side of the := are subterms of the patterns on the left-hand side. The idea is that they
are structurally smaller, and hence appear in the inductive type at an earlier stage. Here are some examples of structural
recursion from the last chapter, now defined using the equation compiler:

def add : nat → nat → nat

| m zero := m

| m (succ n) := succ (add m n)

(continues on next page)

122 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

local infix (name := add) ` + ` := add

theorem add_zero (m : nat) : m + zero = m := rfl

theorem add_succ (m n : nat) : m + succ n = succ (m + n) := rfl

theorem zero_add : ∀ n, zero + n = n

| zero := rfl

| (succ n) := congr_arg succ (zero_add n)

def mul : nat → nat → nat

| n zero := zero

| n (succ m) := mul n m + n

The proof of zero_add makes it clear that proof by induction is really a form of induction in Lean.
The example above shows that the defining equations for add hold definitionally, and the same is true of mul. The equation
compiler tries to ensure that this holds whenever possible, as is the case with straightforward structural induction. In other
situations, however, reductions hold only propositionally, which is to say, they are equational theorems that must be applied
explicitly. The equation compiler generates such theorems internally. They are not meant to be used directly by the user;
rather, the simp and rewrite tactics are configured to use them when necessary. Thus both of the following proofs of
zero_add work:

theorem zero_add : ∀ n, zero + n = n

| zero := by simp [add]

| (succ n) := by simp [add, zero_add n]

theorem zero_add' : ∀ n, zero + n = n

| zero := by rw [add]

| (succ n) := by rw [add, zero_add' n]

In fact, because in this case the defining equations hold definitionally, we can use dsimp, the simplifier that uses definitional
reductions only, to carry out the first step.

theorem zero_add : ∀ n, zero + n = n

| zero := by dsimp [add]; reflexivity

| (succ n) := by dsimp [add]; rw [zero_add n]

As with definition by pattern matching, parameters to a structural recursion or induction may appear before the colon.
Such parameters are simply added to the local context before the definition is processed. For example, the definition of
addition may also be written as follows:

def add (m : nat) : nat → nat

| zero := m

| (succ n) := succ (add n)

This may seem a little odd, but you should read the definition as follows: “Fix m, and define the function which adds
something to m recursively, as follows. To add zero, return m. To add the successor of n, first add n, and then take
the successor.” The mechanism for adding parameters to the local context is what makes it possible to process match
expressions within terms, as described in Section 8.8.
A more interesting example of structural recursion is given by the Fibonacci function fib.

8.3. Structural Recursion and Induction 123

Theorem Proving in Lean, Release 3.23.0

def fib : nat → nat

| 0 := 1

| 1 := 1

| (n+2) := fib (n+1) + fib n

example : fib 0 = 1 := rfl

example : fib 1 = 1 := rfl

example (n : nat) : fib (n + 2) = fib (n + 1) + fib n := rfl

example : fib 7 = 21 := rfl

example : fib 7 = 21 :=

begin

dsimp [fib], -- expands fib 7 as a sum of 1's

reflexivity

end

Here, the value of the fib function at n + 2 (which is definitionally equal to succ (succ n)) is defined in terms of
the values at n + 1 (which is definitionally equivalent to succ n) and the value at n. This is a notoriously inefficient way
of computing the fibonacci function, however, with an execution time that is exponential in n. Here is a better way:

def fib_aux : nat → nat × nat

| 0 := (0, 1)

| (n + 1) := let p := fib_aux n in (p.2, p.1 + p.2)

def fib (n : nat) := (fib_aux n).1

#eval fib 100

Another good example of a recursive definition is the list append function.

def append {α : Type*} : list α → list α → list α
| [] l := l

| (h::t) l := h :: append t l

example : append [(1 : N), 2, 3] [4, 5] = [1, 2, 3, 4, 5] := rfl

Here is another: it adds elements of the first list to elements of the second list, until one of the two lists runs out.

def {u} list_add {α : Type u} [has_add α] :

list α → list α → list α
| [] _ := []

| _ [] := []

| (a :: l) (b :: m) := (a + b) :: list_add l m

#eval list_add [1, 2, 3] [4, 5, 6, 6, 9, 10]

You are encouraged to experiment with similar examples in the exercises below.

8.4 Well-Founded Recursion and Induction
Dependent type theory is powerful enough to encode and justify well-founded recursion. Let us start with the logical
background that is needed to understand how it works.

124 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

Lean’s standard library defines two predicates, acc r a and well_founded r, where r is a binary relation on a type
α, and a is an element of type α.

universe u

variable α : Sort u

variable r : α → α → Prop

#check (acc r : α → Prop)

#check (well_founded r : Prop)

The first, acc, is an inductively defined predicate. According to its definition, acc r x is equivalent to ∀ y, r y x

→ acc r y. If you think of r y x as denoting a kind of order relation y ≺ x, then acc r x says that x is accessible
from below, in the sense that all its predecessors are accessible. In particular, if x has no predecessors, it is accessible.
Given any type α, we should be able to assign a value to each accessible element of α, recursively, by assigning values to
all its predecessors first.
The statement that r is well founded, denoted well_founded r, is exactly the statement that every element of the type
is accessible. By the above considerations, if r is a well-founded relation on a type α, we should have a principle of well-
founded recursion on α, with respect to the relation r. And, indeed, we do: the standard library defines well_founded.
fix, which serves exactly that purpose.

universes u v

variable α : Sort u

variable r : α → α → Prop

variable h : well_founded r

variable C : α → Sort v

variable F : Π x, (Π (y : α), r y x → C y) → C x

def f : Π (x : α), C x := well_founded.fix h F

There is a long cast of characters here, but the first block we have already seen: the type, α, the relation, r, and the
assumption, h, that r is well founded. The variable C represents the motive of the recursive definition: for each element
x : α, we would like to construct an element of C x. The function F provides the inductive recipe for doing that: it
tells us how to construct an element C x, given elements of C y for each predecessor y of x.
Note that well_founded.fix works equally well as an induction principle. It says that if ≺ is well founded and you
want to prove ∀ x, C x, it suffices to show that for an arbitrary x, if we have ∀ y ≺ x, C y, then we have C x.
Lean knows that the usual order < on the natural numbers is well founded. It also knows a number of ways of constructing
new well founded orders from others, for example, using lexicographic order.
Here is essentially the definition of division on the natural numbers that is found in the standard library.

open nat

def div_rec_lemma {x y : N} : 0 < y ∧ y ≤ x → x - y < x :=

λ h, nat.sub_lt (lt_of_lt_of_le h.left h.right) h.left

def div.F (x : N) (f : Π x1, x1 < x → N → N) (y : N) : N :=

if h : 0 < y ∧ y ≤ x then

f (x - y) (div_rec_lemma h) y + 1

else

zero

(continues on next page)

8.4. Well-Founded Recursion and Induction 125

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

def div := well_founded.fix lt_wf div.F

The definition is somewhat inscrutable. Here the recursion is on x, and div.F x f : N → N returns the “divide by
y” function for that fixed x. You have to remember that the second argument to div.F, the recipe for the recursion, is a
function that is supposed to return the divide by y function for all values x1 smaller than x.
The equation compiler is designed to make definitions like this more convenient. It accepts the following:

def div : N → N → N
| x y :=

if h : 0 < y ∧ y ≤ x then

have x - y < x,

from nat.sub_lt (lt_of_lt_of_le h.left h.right) h.left,

div (x - y) y + 1

else

0

When the equation compiler encounters a recursive definition, it first tries structural recursion, and only when that fails,
does it fall back on well-founded recursion. In this case, detecting the possibility of well-founded recursion on the natural
numbers, it uses the usual lexicographic ordering on the pair (x, y). The equation compiler in and of itself is not clever
enough to derive that x - y is less than x under the given hypotheses, but we can help it out by putting this fact in the
local context. The equation compiler looks in the local context for such information, and, when it finds it, puts it to good
use.
The defining equation for div does not hold definitionally, but the equation is available to rewrite and simp. The
simplifier will loop if you apply it blindly, but rewrite will do the trick.

example (x y : N) :

div x y = if 0 < y ∧ y ≤ x then div (x - y) y + 1 else 0 :=

by rw [div]

example (x y : N) (h : 0 < y ∧ y ≤ x) :

div x y = div (x - y) y + 1 :=

by rw [div, if_pos h]

The following example is similar: it converts any natural number to a binary expression, represented as a list of 0’s and
1’s. We have to provide the equation compiler with evidence that the recursive call is decreasing, which we do here with
a sorry. The sorry does not prevent the bytecode evaluator from evaluating the function successfully.

def nat_to_bin : N → list N
| 0 := [0]

| 1 := [1]

| (n + 2) :=

have (n + 2) / 2 < n + 2, from sorry,

nat_to_bin ((n + 2) / 2) ++ [n % 2]

#eval nat_to_bin 1234567

As a final example, we observe that Ackermann’s function can be defined directly, because it is justified by the well
foundedness of the lexicographic order on the natural numbers.

def ack : nat → nat → nat

| 0 y := y+1

(continues on next page)

126 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
| (x+1) 0 := ack x 1

| (x+1) (y+1) := ack x (ack (x+1) y)

#eval ack 3 5

Lean’s mechanisms for guessing a well-founded relation and then proving that recursive calls decrease are still in a rudi-
mentary state. They will be improved over time. When they work, they provide a much more convenient way of defining
functions than using well_founded.fix manually. When they don’t, the latter is always available as a backup.

8.5 Mutual Recursion
Lean also supports mutual recursive definitions. The syntax is similar to that for mutual inductive types, as described in
Section 7.9. Here is an example:

mutual def even, odd

with even : nat → bool

| 0 := tt

| (a+1) := odd a

with odd : nat → bool

| 0 := ff

| (a+1) := even a

example (a : nat) : even (a + 1) = odd a :=

by simp [even]

example (a : nat) : odd (a + 1) = even a :=

by simp [odd]

lemma even_eq_not_odd : ∀ a, even a = bnot (odd a) :=

begin

intro a, induction a,

simp [even, odd],

simp [*, even, odd]

end

What makes this a mutual definition is that even is defined recursively in terms of odd, while odd is defined recursively
in terms of even. Under the hood, this is compiled as a single recursive definition. The internally defined function takes,
as argument, an element of a sum type, either an input to even, or an input to odd. It then returns an output appropriate
to the input. To define that function, Lean uses a suitable well-founded measure. The internals are meant to be hidden
from users; the canonical way to make use of such definitions is to use rewrite or simp, as we did above.
Mutual recursive definitions also provide natural ways of working with mutual and nested inductive types, as described in
Section 7.9. Recall the definition of even and odd as mutual inductive predicates, as presented as an example there:

mutual inductive even, odd

with even : N → Prop

| even_zero : even 0

| even_succ : ∀ n, odd n → even (n + 1)

with odd : N → Prop

| odd_succ : ∀ n, even n → odd (n + 1)

The constructors, even_zero, even_succ, and odd_succ provide positive means for showing that a number is even
or odd. We need to use the fact that the inductive type is generated by these constructors to know that the zero is not odd,

8.5. Mutual Recursion 127

Theorem Proving in Lean, Release 3.23.0

and that the latter two implications reverse. As usual, the constructors are kept in a namespace that is named after the
type being defined, and the command open even odd allows us to access them move conveniently.

open even odd

theorem not_odd_zero : ¬ odd 0.

mutual theorem even_of_odd_succ, odd_of_even_succ

with even_of_odd_succ : ∀ n, odd (n + 1) → even n

| _ (odd_succ n h) := h

with odd_of_even_succ : ∀ n, even (n + 1) → odd n

| _ (even_succ n h) := h

For another example, suppose we use a nested inductive type to define a set of terms inductively, so that a term is either
a constant (with a name given by a string), or the result of applying a constant to a list of constants.

inductive term

| const : string → term

| app : string → list term → term

We can then use a mutual recursive definition to count the number of constants occurring in a term, as well as the number
occurring in a list of terms.

open term

mutual def num_consts, num_consts_lst

with num_consts : term → nat

| (term.const n) := 1

| (term.app n ts) := num_consts_lst ts

with num_consts_lst : list term → nat

| [] := 0

| (t::ts) := num_consts t + num_consts_lst ts

def sample_term := app "f" [app "g" [const "x"], const "y"]

#eval num_consts sample_term

8.6 Dependent Pattern Matching
All the examples of pattern matching we considered in Section 8.1 can easily be written using cases_on and rec_on.
However, this is often not the case with indexed inductive families such as vector α n, since case splits impose
constraints on the values of the indices. Without the equation compiler, we would need a lot of boilerplate code to define
very simple functions such as map, zip, and unzip using recursors. To understand the difficulty, consider what it would
take to define a function tail which takes a vector v : vector α (succ n) and deletes the first element. A first
thought might be to use the cases_on function:

universe u

inductive vector (α : Type u) : nat → Type u

| nil {} : vector 0

| cons : Π {n}, α → vector n → vector (n+1)

namespace vector

(continues on next page)

128 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
local notation (name := cons) h :: t := cons h t

#check @vector.cases_on

-- Π {α : Type*}

-- {C : Π (a : N), vector α a → Type*}

-- {a : N}
-- (n : vector α a),

-- (e1 : C 0 nil)

-- (e2 : Π {n : N} (a : α) (a_1 : vector α n),

-- C (n + 1) (cons a a_1)),

-- C a n

end vector

But what value should we return in the nil case? Something funny is going on: if v has type vector α (succ n), it
can’t be nil, but it is not clear how to tell that to cases_on.
One solution is to define an auxiliary function:

def tail_aux {α : Type*} {n m : N} (v : vector α m) :

m = n + 1 → vector α n :=

vector.cases_on v

(assume H : 0 = n + 1, nat.no_confusion H)

(assume m (a : α) w : vector α m,

assume H : m + 1 = n + 1,

nat.no_confusion H (λ H1 : m = n, eq.rec_on H1 w))

def tail {α : Type*} {n : N} (v : vector α (n+1)) :

vector α n :=

tail_aux v rfl

In the nil case, m is instantiated to 0, and no_confusion makes use of the fact that 0 = succ n cannot occur.
Otherwise, v is of the form a :: w, and we can simply return w, after casting it from a vector of length m to a vector of
length n.
The difficulty in defining tail is to maintain the relationships between the indices. The hypothesis e : m = n

+ 1 in tail_aux is used to communicate the relationship between n and the index associated with the minor premise.
Moreover, the zero = n + 1 case is unreachable, and the canonical way to discard such a case is to use no_confusion.
The tail function is, however, easy to define using recursive equations, and the equation compiler generates all the
boilerplate code automatically for us. Here are a number of similar examples:

def head {α : Type*} : Π {n}, vector α (n+1) → α
| n (h :: t) := h

def tail {α : Type*} : Π {n}, vector α (n+1) → vector α n

| n (h :: t) := t

lemma eta {α : Type*} :

∀ {n} (v : vector α (n+1)), head v :: tail v = v

| n (h :: t) := rfl

def map {α β γ : Type*} (f : α → β → γ) :

Π {n}, vector α n → vector β n → vector γ n

(continues on next page)

8.6. Dependent Pattern Matching 129

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
| 0 nil nil := nil

| (n+1) (a :: va) (b :: vb) := f a b :: map va vb

def zip {α β : Type*} :

Π {n}, vector α n → vector β n → vector (α × β) n

| 0 nil nil := nil

| (n+1) (a :: va) (b :: vb) := (a, b) :: zip va vb

Note that we can omit recursive equations for “unreachable” cases such as head nil. The automatically generated
definitions for indexed families are far from straightforward. For example:

#print map

#print map._main

The map function is even more tedious to define by hand than the tail function. We encourage you to try it, using
rec_on, cases_on and no_confusion.

8.7 Inaccessible Terms
Sometimes an argument in a dependent matching pattern is not essential to the definition, but nonetheless has to be
included to specialize the type of the expression appropriately. Lean allows users to mark such subterms as inaccessible
for pattern matching. These annotations are essential, for example, when a term occurring in the left-hand side is neither
a variable nor a constructor application, because these are not suitable targets for pattern matching. We can view such
inaccessible terms as “don’t care” components of the patterns. You can declare a subterm inaccessible by writing .(t).
If the inaccessible term can be inferred, you can also write ._.
The following example can be found in [GoMM06]. We declare an inductive type that defines the property of “being in
the image of f”. You can view an element of the type image_of f b as evidence that b is in the image of f, whereby the
constructor imf is used to build such evidence. We can then define any function f with an “inverse” which takes anything
in the image of f to an element that is mapped to it. The typing rules forces us to write f a for the first argument, but
this term is neither a variable nor a constructor application, and plays no role in the pattern-matching definition. To define
the function inverse below, we have to mark f a inaccessible.

universe u

variables {α β : Type u}

inductive image_of (f : α → β) : β → Type u

| imf : Π a, image_of (f a)

open image_of

def inverse {f : α → β} : Π b, image_of f b → α
| .(f a) (imf a) := a

In the example above, the inaccessible annotation makes it clear that f is not a pattern matching variable.
Inaccessible terms can be used to clarify and control definitions that make use of dependent pattern matching. Consider
the following definition of the function vector.add, which adds two vectors of elements of a type, assuming that type
has an associated addition function:

universe u

inductive vector (α : Type u) : N → Type u

(continues on next page)

130 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
| nil {} : vector 0

| cons : Π {n}, α → vector n → vector (n+1)

namespace vector

local notation (name := cons) h :: t := cons h t

variable {α : Type u}

def add [has_add α] : Π {n : N}, vector α n → vector α n → vector α n

| 0 nil nil := nil

| (n+1) (cons a v) (cons b w) := cons (a + b) (add v w)

end vector

The argument {n : N} has to appear after the colon, because it cannot be held fixed throughout the definition. When
implementing this definition, the equation compiler starts with a case distinction as to whether the first argument is 0 or
of the form n+1. This is followed by nested case splits on the next two arguments, and in each case the equation compiler
rules out the cases are not compatible with the first pattern.
But, in fact, a case split is not required on the first argument; the cases_on eliminator for vector automatically abstracts
this argument and replaces it by 0 and n + 1 when we do a case split on the second argument. Using inaccessible terms,
we can prompt the equation compiler to avoid the case split on n:

def add [has_add α] : Π {n : N}, vector α n → vector α n → vector α n

| ._ nil nil := nil

| ._ (cons a v) (cons b w) := cons (a + b) (add v w)

Marking the position as an inaccessible implicit argument tells the equation compiler first, that the form of the argument
should be inferred from the constraints posed by the other arguments, and, second, that the first argument should not
participate in pattern matching.
Using explicit inaccessible terms makes it even clearer what is going on.

def add [has_add α] : Π {n : N}, vector α n → vector α n → vector α n

| .(0) nil nil := nil

| .(n+1) (@cons .(α) n a v) (cons b w) := cons (a + b) (add v w)

We have to introduce the variable n in the pattern @cons .(α) n a v, since it is involved in the pattern match over that
argument. In contrast, the parameter α is held fixed; we could have left it implicit by writing ._ instead. The advantage
to naming the variable there is that we can now use inaccessible terms in the first position to display the values that were
inferred implicitly in the previous example.

8.8 Match Expressions
Lean also provides a compiler formatch-with expressions found in many functional languages. It uses essentially the same
infrastructure used to compile recursive equations.

def is_not_zero (m : N) : bool :=

match m with

| 0 := ff

| (n+1) := tt

end

8.8. Match Expressions 131

Theorem Proving in Lean, Release 3.23.0

This does not look very different from an ordinary pattern matching definition, but the point is that a match can be used
anywhere in an expression, and with arbitrary arguments.

variable {α : Type*}

variable p : α → bool

def filter : list α → list α
| [] := []

| (a :: l) :=

match p a with

| tt := a :: filter l

| ff := filter l

end

example : filter is_not_zero [1, 0, 0, 3, 0] = [1, 3] := rfl

Here is another example:

def foo (n : N) (b c : bool) :=

5 + match n - 5, b && c with

| 0, tt := 0

| m+1, tt := m + 7

| 0, ff := 5

| m+1, ff := m + 3

end

#eval foo 7 tt ff

example : foo 7 tt ff = 9 := rfl

Notice that with multiple arguments, the syntax for the match statement is markedly different from that used for pattern
matching in an ordinary recursive definition. Because arbitrary terms are allowed in the match, parentheses are not
enough to set the arguments apart; if we wrote (n - 5) (b && c), it would be interpreted as the result of applying n
- 5 to b && c. Instead, the arguments are separated by commas. Then, for consistency, the patterns on each line are
separated by commas as well.
Lean uses the match construct internally to implement a pattern-matching assume, as well as a pattern-matching let.
Thus, all four of these definitions have the same net effect.

def bar1 : N × N → N
| (m, n) := m + n

def bar2 (p : N × N) : N :=

match p with (m, n) := m + n end

def bar3 : N × N → N :=

λ 〈m, n〉, m + n

def bar4 (p : N × N) : N :=

let 〈m, n〉 := p in m + n

The second definition also illustrates the fact that in a match with a single pattern, the vertical bar is optional. These
variations are equally useful for destructing propositions:

132 Chapter 8. Induction and Recursion

Theorem Proving in Lean, Release 3.23.0

variables p q : N → Prop

example : (∃ x, p x) → (∃ y, q y) →
∃ x y, p x ∧ q y

| 〈x, px〉 〈y, qy〉 := 〈x, y, px, qy〉

example (h0 : ∃ x, p x) (h1 : ∃ y, q y) :

∃ x y, p x ∧ q y :=

match h0, h1 with

〈x, px〉, 〈y, qy〉 := 〈x, y, px, qy〉
end

example : (∃ x, p x) → (∃ y, q y) →
∃ x y, p x ∧ q y :=

λ 〈x, px〉 〈y, qy〉, 〈x, y, px, qy〉

example (h0 : ∃ x, p x) (h1 : ∃ y, q y) :

∃ x y, p x ∧ q y :=

let 〈x, px〉 := h0,

〈y, qy〉 := h1 in

〈x, y, px, qy〉

8.9 Exercises
1. Use pattern matching to prove that the composition of surjective functions is surjective:

open function

#print surjective

universes u v w

variables {α : Type u} {β : Type v} {γ : Type w}

open function

lemma surjective_comp {g : β → γ} {f : α → β}
(hg : surjective g) (hf : surjective f) :

surjective (g ◦ f) := sorry

2. Open a namespace hidden to avoid naming conflicts, and use the equation compiler to define addition, multipli-
cation, and exponentiation on the natural numbers. Then use the equation compiler to derive some of their basic
properties.

3. Similarly, use the equation compiler to define some basic operations on lists (like the reverse function) and prove
theorems about lists by induction (such as the fact that reverse (reverse l) = l for any list l).

4. Define your own function to carry out course-of-value recursion on the natural numbers. Similarly, see if you can
figure out how to define well_founded.fix on your own.

5. Following the examples in Section 8.6, define a function that will append two vectors. This is tricky; you will have
to define an auxiliary function.

6. Consider the following type of arithmetic expressions. The idea is that var n is a variable, vn, and const n is
the constant whose value is n.

8.9. Exercises 133

Theorem Proving in Lean, Release 3.23.0

inductive aexpr : Type

| const : N → aexpr

| var : N → aexpr

| plus : aexpr → aexpr → aexpr

| times : aexpr → aexpr → aexpr

open aexpr

def sample_aexpr : aexpr :=

plus (times (var 0) (const 7)) (times (const 2) (var 1))

Here sample_aexpr represents (v0 + 7) * (2 + v1).
Write a function that evaluates such an expression, evaluating each var n to v n.

def aeval (v : N → N) : aexpr → N
| (const n) := sorry

| (var n) := v n

| (plus e1 e2) := sorry

| (times e1 e2) := sorry

def sample_val : N → N
| 0 := 5

| 1 := 6

| _ := 0

-- Try it out. You should get 47 here.

-- #eval aeval sample_val sample_aexpr

Implement “constant fusion,” a procedure that simplifies subterms like 5 + 7 to 12. Using the auxiliary function
simp_const, define a function “fuse”: to simplify a plus or a times, first simplify the arguments recursively, and
then apply simp_const to try to simplify the result.

def simp_const : aexpr → aexpr

| (plus (const n1) (const n2)) := const (n1 + n2)

| (times (const n1) (const n2)) := const (n1 * n2)

| e := e

def fuse : aexpr → aexpr := sorry

theorem simp_const_eq (v : N → N) :

∀ e : aexpr, aeval v (simp_const e) = aeval v e :=

sorry

theorem fuse_eq (v : N → N) :

∀ e : aexpr, aeval v (fuse e) = aeval v e :=

sorry

The last two theorems show that the definitions preserve the value.

134 Chapter 8. Induction and Recursion

CHAPTER

NINE

STRUCTURES AND RECORDS

We have seen that Lean’s foundational system includes inductive types. We have, moreover, noted that it is a remarkable
fact that it is possible to construct a substantial edifice of mathematics based on nothing more than the type universes,
Pi types, and inductive types; everything else follows from those. The Lean standard library contains many instances of
inductive types (e.g., nat, prod, list), and even the logical connectives are defined using inductive types.
Remember that a non-recursive inductive type that contains only one constructor is called a structure or record. The
product type is a structure, as is the dependent product type, that is, the Sigma type. In general, whenever we define a
structure S, we usually define projection functions that allow us to “destruct” each instance of S and retrieve the values that
are stored in its fields. The functions prod.pr1 and prod.pr2, which return the first and second elements of a pair, are
examples of such projections.
When writing programs or formalizing mathematics, it is not uncommon to define structures containing many fields. The
structure command, available in Lean, provides infrastructure to support this process. When we define a structure
using this command, Lean automatically generates all the projection functions. The structure command also allows
us to define new structures based on previously defined ones. Moreover, Lean provides convenient notation for defining
instances of a given structure.

9.1 Declaring Structures
The structure command is essentially a “front end” for defining inductive data types. Every structure declaration
introduces a namespace with the same name. The general form is as follows:

structure <name> <parameters> <parent-structures> : Sort u :=

<constructor> :: <fields>

Most parts are optional. Here is an example:

structure point (α : Type*) :=

mk :: (x : α) (y : α)

Values of type point are created using point.mk a b, and the fields of a point p are accessed using point.x p and
point.y p. The structure command also generates useful recursors and theorems. Here are some of the constructions
generated for the declaration above.

#check point -- a Type

#check point.rec_on -- the eliminator

#check point.x -- a projection / field accessor

#check point.y -- a projection / field accessor

You can obtain the complete list of generated constructions using the command #print prefix.

135

Theorem Proving in Lean, Release 3.23.0

#print prefix point

Here are some simple theorems and expressions that use the generated constructions. As usual, you can avoid the prefix
point by using the command open point.

#reduce point.x (point.mk 10 20)

#reduce point.y (point.mk 10 20)

open point

example (α : Type*) (a b : α) : x (mk a b) = a :=

rfl

example (α : Type*) (a b : α) : y (mk a b) = b :=

rfl

Given p : point nat, the notation p.x is shorthand for point.x p. This provides a convenient way of accessing
the fields of a structure.

def p := point.mk 10 20

#check p.x -- nat

#reduce p.x -- 10

#reduce p.y -- 20

If the constructor is not provided, then a constructor is named mk by default.

structure prod (α : Type*) (β : Type*) :=

(pr1 : α) (pr2 : β)

#check prod.mk

The dot notation is convenient not just for accessing the projections of a record, but also for applying functions defined in a
namespace with the same name. Recall from Section 3.3.1 that if p has type point, the expression p.foo is interpreted
as point.foo p, assuming that the first non-implicit argument to foo has type point. The expression p.add q is
therefore shorthand for point.add p q in the example below.

structure point (α : Type*) :=

mk :: (x : α) (y : α)

namespace point

def add (p q : point N) := mk (p.x + q.x) (p.y + q.y)

end point

def p : point N := point.mk 1 2

def q : point N := point.mk 3 4

#reduce p.add q -- {x := 4, y := 6}

In the next chapter, you will learn how to define a function like add so that it works generically for elements of point α
rather than just point N, assuming α has an associated addition operation.

136 Chapter 9. Structures and Records

Theorem Proving in Lean, Release 3.23.0

More generally, given an expression p.foo x y z, Lean will insert p at the first non-implicit argument to foo of type
point. For example, with the definition of scalar multiplication below, p.smul 3 is interpreted as point.smul 3 p.

structure point (α : Type*) :=

mk :: (x : α) (y : α)

def point.smul (n : N) (p : point N) :=

point.mk (n * p.x) (n * p.y)

def p : point N := point.mk 1 2

#reduce p.smul 3 -- {x := 3, y := 6}

It is common to use a similar trick with the list.map function, which takes a list as its second non-implicit argument:

#check @list.map

-- Π {α : Type u_1} {β : Type u_2}, (α → β) → list α → list β

def l : list nat := [1, 2, 3]

def f : nat → nat := λ x, x * x

#eval l.map f -- [1, 4, 9]

Here l.map f is interpreted as list.map f l.
If you have a structure definition that depends on a type, you can make it polymorphic over universe levels using a
previously declared universe variable, declaring a universe variable on the fly, or using an underscore:

universe u

structure point (α : Type u) :=

mk :: (x : α) (y : α)

structure {v} point2 (α : Type v) :=

mk :: (x : α) (y : α)

structure point3 (α : Type _) :=

mk :: (x : α) (y : α)

#check @point

#check @point2

#check @point3

The three variations have the same net effect. The annotations in the next example force the parameters α and β to be
types from the same universe, and set the return type to also be in the same universe.

structure {u} prod (α : Type u) (β : Type u) :

Type u :=

(pr1 : α) (pr2 : β)

set_option pp.universes true

#check prod.mk

The set_option command above instructs Lean to display the universe levels. We can use the anonymous constructor
notation to build structure values whenever the expected type is known.

9.1. Declaring Structures 137

Theorem Proving in Lean, Release 3.23.0

structure {u} prod (α : Type u) (β : Type u) :

Type u :=

(pr1 : α) (pr2 : β)

example : prod nat nat :=

〈1, 2〉

#check (〈1, 2〉 : prod nat nat)

9.2 Objects
We have been using constructors to create elements of a structure type. For structures containing many fields, this is
often inconvenient, because we have to remember the order in which the fields were defined. Lean therefore provides the
following alternative notations for defining elements of a structure type.

{ structure-name . (<field-name> := <expr>)* }

or

{ (<field-name> := <expr>)* }

The prefix structure-name . can be omitted whenever the name of the structure can be inferred from the expected
type. For example, we use this notation to define “points.” The order that the fields are specified does not matter, so all
the expressions below define the same point.

structure point (α : Type*) :=

mk :: (x : α) (y : α)

#check { point . x := 10, y := 20 } -- point N
#check { point . y := 20, x := 10 }

#check ({x := 10, y := 20} : point nat)

example : point nat :=

{ y := 20, x := 10 }

If the value of a field is not specified, Lean tries to infer it. If the unspecified fields cannot be inferred, Lean signs an error
indicating the corresponding placeholder could not be synthesized.

structure my_struct :=

mk :: {α : Type*} {β : Type*} (a : α) (b : β)

#check { my_struct . a := 10, b := true }

Record update is another common operation which amounts to creating a new record object by modifying the value of
one or more fields in an old one. Lean allows you to specify that unassigned fields in the specification of a record should
be taken from a previous defined record object r by adding the annotation ..r after the field assignments. If more than
one record object is provided, then they are visited in order until Lean finds one the contains the unspecified field. Lean
raises an error if any of the field names remain unspecified after all the objects are visited.

structure point (α : Type*) :=

mk :: (x : α) (y : α)

def p : point nat :=

{x := 1, y := 2}

(continues on next page)

138 Chapter 9. Structures and Records

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

#reduce {y := 3, ..p} -- {x := 1, y := 3}

#reduce {x := 4, ..p} -- {x := 4, y := 2}

structure point3 (α : Type*) :=

mk :: (x : α) (y : α) (z : α)

def q : point3 nat :=

{x := 5, y := 5, z := 5}

def r : point3 nat := {x := 6, ..p, ..q}

#print r -- {x := 6, y := p.y, z := q.z}

#reduce r -- {x := 6, y := 2, z := 5}

9.3 Inheritance
We can extend existing structures by adding new fields. This feature allow us to simulate a form of inheritance.

structure point (α : Type*) :=

mk :: (x : α) (y : α)

inductive color

| red | green | blue

structure color_point (α : Type*) extends point α :=

mk :: (c : color)

In the next example, we define a structure using multiple inheritance, and then define an object using objects of the parent
structures.

structure point (α : Type*) :=

(x : α) (y : α) (z : α)

structure rgb_val :=

(red : nat) (green : nat) (blue : nat)

structure red_green_point (α : Type*) extends point α, rgb_val :=

(no_blue : blue = 0)

def p : point nat := {x := 10, y := 10, z := 20}

def rgp : red_green_point nat :=

{red := 200, green := 40, blue := 0, no_blue := rfl, ..p}

example : rgp.x = 10 := rfl

example : rgp.red = 200 := rfl

9.3. Inheritance 139

Theorem Proving in Lean, Release 3.23.0

140 Chapter 9. Structures and Records

CHAPTER

TEN

TYPE CLASSES

We have seen that Lean’s elaborator provides helpful automation, filling in information that is tedious to enter by hand.
In this section we will explore a simple but powerful technical device known as type class inference, which provides yet
another mechanism for the elaborator to supply missing information.
The notion of a type class originated with the Haskell programming language. In that context, it is often used to associate
operations, like a canonical addition or multiplication operation, to a data type. Many of the original uses carry over, but,
as we will see, the realm of interactive theorem proving raises even more possibilities for their use.

10.1 Type Classes and Instances
Any family of types can be marked as a type class. We can then declare particular elements of a type class to be instances.
These provide hints to the elaborator: any time the elaborator is looking for an element of a type class, it can consult a
table of declared instances to find a suitable element.
More precisely, there are three steps involved:

• First, we declare a family of inductive types to be a type class.
• Second, we declare instances of the type class.
• Finally, we mark some implicit arguments with square brackets instead of curly brackets, to inform the elaborator
that these arguments should be inferred by the type class mechanism.

Let us start with a simple example. Many theorems hold under the additional assumption that a type is inhabited, which is
to say, it has at least one element. For example, if α is a type, ∃ x : α, x = x is true only if α is inhabited. Similarly,
it often happens that we would like a definition to return a default element in a “corner case.” For example, we would like
the expression head l to be of type α when l is of type list α; but then we are faced with the problem that head l

needs to return an “arbitrary” element of α in the case where l is the empty list, nil.
The standard library defines a type class inhabited : Type → Type to enable type class inference to infer a
“default” or “arbitrary” element of an inhabited type. In the example below, we use a namespace hidden as usual to
avoid conflicting with the definitions in the standard library.
Let us start with the first step of the program above, declaring an appropriate class:

class inhabited (α : Type _) :=

(default : α)

The command class above is shorthand for

@[class] structure inhabited (α : Type _) :=

(default : α)

141

Theorem Proving in Lean, Release 3.23.0

An element of the class inhabited α is simply an expression of the form inhabited.mk a, for some element a :

α. The projection inhabited.default will allow us to “extract” such an element of α from an element of inhabited
α.
The second step of the program is to populate the class with some instances:

instance Prop_inhabited : inhabited Prop :=

inhabited.mk true

instance bool_inhabited : inhabited bool :=

inhabited.mk tt

instance nat_inhabited : inhabited nat :=

inhabited.mk 0

instance unit_inhabited : inhabited unit :=

inhabited.mk ()

In the Lean standard library, we regularly use the anonymous constructor when defining instances. It is particularly useful
when the class name is long.

instance Prop_inhabited : inhabited Prop :=

〈true〉

instance bool_inhabited : inhabited bool :=

〈tt〉

instance nat_inhabited : inhabited nat :=

〈0〉

instance unit_inhabited : inhabited unit :=

〈()〉

These declarations simply record the definitions Prop_inhabited, bool_inhabited, nat_inhabited, and
unit_inhabited on a list of instances. Whenever the elaborator is looking for a value to assign to an argument ?
M of type inhabited α for some α, it can check the list for a suitable instance. For example, if it looking for an instance
of inhabited Prop, it will find Prop_inhabited.
The final step of the program is to define a function that infers an element s : inhabited α and puts it to good use.
The following function simply extracts the corresponding element a : α:

def default (α : Type*) [s : inhabited α] : α :=

@inhabited.default α s

This has the effect that given a type expression α, whenever we write default α, we are really writing default α
?s, leaving the elaborator to find a suitable value for the metavariable ?s. When the elaborator succeeds in finding such
a value, it has effectively produced an element of type α, as though by magic.

#check default Prop -- Prop

#check default nat -- N
#check default bool -- bool

#check default unit -- unit

In general, whenever we write default α, we are asking the elaborator to synthesize an element of type α.
Notice that we can “see” the value that is synthesized with #reduce:

142 Chapter 10. Type Classes

Theorem Proving in Lean, Release 3.23.0

#reduce default Prop -- true

#reduce default nat -- 0

#reduce default bool -- ff

#reduce default unit -- ()

Sometimes we want to think of the default element of a type as being an arbitrary element, whose specific value should
not play a role in our proofs. For that purpose, we can write arbitrary α instead of default α. The definition of
arbitrary is the same as that of default, but is marked irreducible to discourage the elaborator from unfolding it.
This does not preclude proofs from making use of the value, however, so the use of arbitrary rather than default
functions primarily to signal intent.

10.2 Chaining Instances
If that were the extent of type class inference, it would not be all that impressive; it would be simply a mechanism of
storing a list of instances for the elaborator to find in a lookup table. What makes type class inference powerful is that
one can chain instances. That is, an instance declaration can in turn depend on an implicit instance of a type class. This
causes class inference to chain through instances recursively, backtracking when necessary, in a Prolog-like search.
For example, the following definition shows that if two types α and β are inhabited, then so is their product:

instance prod_inhabited

{α β : Type*} [inhabited α] [inhabited β] :

inhabited (prod α β) :=

〈(default α, default β)〉

With this added to the earlier instance declarations, type class instance can infer, for example, a default element of nat
× bool:

#check default (nat × bool)

#reduce default (nat × bool)

Given the expression default (nat × bool), the elaborator is called on to infer an implicit argument ?M : inhab-

ited (nat × bool). The instance prod_inhabited reduces this to inferring ?M1 : inhabited nat and ?M2
: inhabited bool. The first one is solved by the instance nat_inhabited. The second uses bool_inhabited.
Similarly, we can inhabit function spaces with suitable constant functions:

instance inhabited_fun (α : Type*) {β : Type*} [inhabited β] :

inhabited (α → β) :=

〈(λ a : α, default β)〉

#check default (nat → nat × bool)

#reduce default (nat → nat × bool)

In this case, type class inference finds the default element λ (a : nat), (0, tt).
As an exercise, try defining default instances for other types, such as sum types and the list type.

10.3 Inferring Notation
We now consider the application of type classes that motivates their use in functional programming languages like Haskell,
namely, to overload notation in a principled way. In Lean, a symbol like + can be given entirely unrelated meanings, a
phenomenon that is sometimes called “ad-hoc” overloading. Typically, however, we use the + symbol to denote a binary
function from a type to itself, that is, a function of type α → α → α for some type α. We can use type classes to

10.2. Chaining Instances 143

Theorem Proving in Lean, Release 3.23.0

infer an appropriate addition function for suitable types α. We will see in the next section that this is especially useful for
developing algebraic hierarchies of structures in a formal setting.
The standard library declares a type class has_add α as follows:

class has_add (α : Type*) :=

(add : α → α → α)

def add {α : Type*} [has_add α] : α → α → α := has_add.add

notation a ` + ` b := add a b

The class has_add α is supposed to be inhabited exactly when there is an appropriate addition function for α. The add
function is designed to find an instance of has_add α for the given type, α, and apply the corresponding binary addition
function. The notation a + b thus refers to the addition that is appropriate to the type of a and b. We can then declare
instances for nat, and bool:

instance nat_has_add : has_add nat :=

〈nat.add〉

instance bool_has_add : has_add bool :=

〈bor〉

#check 2 + 2 -- nat

#check tt + ff -- bool

As with inhabited, the power of type class inference stems not only from the fact that the class enables the elaborator
to look up appropriate instances, but also from the fact that it can chain instances to infer complex addition operations.
For example, assuming that there are appropriate addition functions for types α and β, we can define addition on α × β
pointwise:

instance prod_has_add {α : Type u} {β : Type v}

[has_add α] [has_add β] :

has_add (α × β) :=

〈λ 〈a1, b1〉 〈a2, b2〉, 〈a1+a2, b1+b2〉〉

#check (1, 2) + (3, 4) -- N × N
#reduce (1, 2) + (3, 4) -- (4, 6)

We can similarly define pointwise addition of functions:

instance fun_has_add {α : Type u} {β : Type v} [has_add β] :

has_add (α → β) :=

〈λ f g x, f x + g x〉

#check (λ x : nat, 1) + (λ x, 2) -- N → N
#reduce (λ x : nat, 1) + (λ x, 2) -- λ (x : N), 3

As an exercise, try defining instances of has_add for lists, and show that they work as expected.

10.4 Decidable Propositions
Let us consider another example of a type class defined in the standard library, namely the type class of decidable
propositions. Roughly speaking, an element of Prop is said to be decidable if we can decide whether it is true or false.
The distinction is only useful in constructive mathematics; classically, every proposition is decidable. But if we use the

144 Chapter 10. Type Classes

Theorem Proving in Lean, Release 3.23.0

classical principle, say, to define a function by cases, that function will not be computable. Algorithmically speaking, the
decidable type class can be used to infer a procedure that effectively determines whether or not the proposition is true.
As a result, the type class supports such computational definitions when they are possible while at the same time allowing
a smooth transition to the use of classical definitions and classical reasoning.
In the standard library, decidable is defined formally as follows:

class inductive decidable (p : Prop) : Type

| is_false : ¬p → decidable

| is_true : p → decidable

Logically speaking, having an element t : decidable p is stronger than having an element t : p ∨ ¬p; it enables
us to define values of an arbitrary type depending on the truth value of p. For example, for the expression if p then a

else b to make sense, we need to know that p is decidable. That expression is syntactic sugar for ite p a b, where
ite is defined as follows:

def ite (c : Prop) [d : decidable c] {α : Type*}

(t e : α) : α :=

decidable.rec_on d (λ hnc, e) (λ hc, t)

The standard library also contains a variant of ite called dite, the dependent if-then-else expression. It is defined as
follows:

def dite (c : Prop) [d : decidable c] {α : Type*}

(t : c → α) (e : ¬ c → α) : α :=

decidable.rec_on d (λ hnc : ¬ c, e hnc) (λ hc : c, t hc)

That is, in dite c t e, we can assume hc : c in the “then” branch, and hnc : ¬ c in the “else” branch. To make
dite more convenient to use, Lean allows us to write if h : c then t else e instead of dite c (λ h : c,

t) (λ h : ¬ c, e).
Without classical logic, we cannot prove that every proposition is decidable. But we can prove that certain propositions
are decidable. For example, we can prove the decidability of basic operations like equality and comparisons on the natural
numbers and the integers. Moreover, decidability is preserved under propositional connectives:

#check @and.decidable

-- Π {p q : Prop} [hp : decidable p] [hq : decidable q],

-- decidable (p ∧ q)

#check @or.decidable

#check @not.decidable

#check @implies.decidable

Thus we can carry out definitions by cases on decidable predicates on the natural numbers:

open nat

def step (a b x : N) : N :=

if x < a ∨ x > b then 0 else 1

set_option pp.implicit true

#print definition step

Turning on implicit arguments shows that the elaborator has inferred the decidability of the proposition x < a ∨ x >

b, simply by applying appropriate instances.

10.4. Decidable Propositions 145

Theorem Proving in Lean, Release 3.23.0

With the classical axioms, we can prove that every proposition is decidable. You can import the classical axioms and
make the generic instance of decidability available by including this at the top of your file:

open classical

local attribute [instance] prop_decidable

Thereafter decidable p has an instance for every p, and the elaborator infers that value quickly. Thus all theorems in
the library that rely on decidability assumptions are freely available when you want to reason classically. In Chapter 11, we
will see that using the law of the excluded middle to define functions can prevent them from being used computationally.
If that is important to you, it is best to use sections to limit the use of prop_decidable to places where it is really
needed. Alternatively, you can can assign prop_decidable a low priority:

open classical

local attribute [instance, priority 10] prop_decidable

The guarantees that Lean will favor other instances and fall back on prop_decidable only after other attempts to infer
decidability have failed.
The decidable type class also provides a bit of small-scale automation for proving theorems. The standard library
introduces the following definitions and notation:

def as_true (c : Prop) [decidable c] : Prop :=

if c then true else false

def of_as_true {c : Prop} [h1 : decidable c] (h2 : as_true c) :

c :=

match h1, h2 with

| (is_true h_c), h2 := h_c

| (is_false h_c), h2 := false.elim h2
end

notation `dec_trivial` := of_as_true (by tactic.triv)

They work as follows. The expression as_true c tries to infer a decision procedure for c, and, if it is successful,
evaluates to either true or false. In particular, if c is a true closed expression, as_true c will reduce definitionally to
true. On the assumption that as_true c holds, of_as_true produces a proof of c. The notation dec_trivial puts
it all together: to prove a target c, it applies of_as_true and then uses the triv tactic to prove as_true c. By the
previous observations, dec_trivialwill succeed any time the inferred decision procedure for c has enough information
to evaluate, definitionally, to the is_true case. Here is an example of how dec_trivial can be used:

example : 1 6= 0 ∧ (5 < 2 ∨ 3 < 7) := dec_trivial

Try changing the 3 to 10, thereby rendering the expression false. The resulting error message complains that of_as_true
(1 6= 0 ∧ (5 < 2 ∨ 10 < 7)) is not definitionally equal to true.

10.5 Managing Type Class Inference
You can ask Lean for information about the classes and instances that are currently in scope:

#print classes

#print instances inhabited

If you are ever in a situation where you need to supply an expression that Lean can infer by type class inference, you can
ask Lean to carry out the inference using the tactic apply_instance or the expression infer_instance:

146 Chapter 10. Type Classes

Theorem Proving in Lean, Release 3.23.0

def foo : has_add nat := by apply_instance

def bar : inhabited (nat → nat) := by apply_instance

def baz : has_add nat := infer_instance

def bla : inhabited (nat → nat) := infer_instance

#print foo -- nat.has_add

#reduce foo -- (unreadable)

#print bar -- pi.inhabited N
#reduce bar -- {default := λ (a : N), 0}

#print baz -- infer_instance

#reduce baz -- (same as for #reduce foo)

#print bla -- infer_instance

#reduce bla -- {default := λ (a : N), 0}

In fact, you can use Lean’s (t : T) notation to specify the class whose instance you are looking for, in a concise manner:

#reduce (by apply_instance : inhabited N)
#reduce (infer_instance : inhabited N)

Sometimes Lean can’t find an instance because the class is buried under a definition. For example, with the core library,
Lean cannot find an instance of inhabited (set α). We can declare one explicitly:

-- fails

-- example {α : Type*} : inhabited (set α) :=

-- by apply_instance

def inhabited.set (α : Type*) : inhabited (set α) := 〈∅〉

#print inhabited.set -- λ {α : Type u}, {default := ∅}
#reduce inhabited.set N -- {default := λ (a : N), false}

Alternatively, we can help Lean out by unfolding the definition. The type set α is defined to be α → Prop. Lean
knows that Prop is inhabited, and this is enough for it to be able to infer an element of the function type.

def inhabited.set (α : Type*) : inhabited (set α) :=

by unfold set; apply_instance

#print inhabited.set

-- λ (α : Type u), eq.mpr _ (pi.inhabited α)
#reduce inhabited.set N

-- {default := λ (a : N), true}

Using the dunfold tactic instead of unfold yields a slightly different expression (try it!), since dunfold uses definitional
reduction to unfold the definition, rather than an explicit rewrite.
At times, you may find that the type class inference fails to find an expected instance, or, worse, falls into an infinite loop
and times out. To help debug in these situations, Lean enables you to request a trace of the search:

set_option trace.class_instances true

If you are using VS Code, you can read the results by hovering over the relevant theorem or definition, or opening the

10.5. Managing Type Class Inference 147

Theorem Proving in Lean, Release 3.23.0

messages window with Ctrl-Shift-Enter. In Emacs, you can use C-c C-x to run an independent Lean process on
your file, and the output buffer will show a trace every time the type class resolution procedure is subsequently triggered.
You can also limit the search depth (the default is 32):

set_option class.instance_max_depth 5

Remember also that in both the VS Code and Emacs editor modes, tab completion works in set_option, to help you
find suitable options.
As noted above, the type class instances in a given context represent a Prolog-like program, which gives rise to a back-
tracking search. Both the efficiency of the program and the solutions that are found can depend on the order in which
the system tries the instance. Instances which are declared last are tried first. Moreover, if instances are declared in other
modules, the order in which they are tried depends on the order in which namespaces are opened. Instances declared in
namespaces which are opened later are tried earlier.
You can change the order that type classes instances are tried by assigning them a priority. When an instance is declared, it
is assigned a priority value std.priority.default, defined to be 1000 in module init.core in the standard library.
You can assign other priorities when defining an instance, and you can later change the priority with the attribute
command. The following example illustrates how this is done:

class foo :=

(a : nat) (b : nat)

@[priority std.priority.default+1]

instance i1 : foo :=

〈1, 1〉

instance i2 : foo :=

〈2, 2〉

example : foo.a = 1 := rfl

@[priority std.priority.default+20]

instance i3 : foo :=

〈3, 3〉

example : foo.a = 3 := rfl

attribute [instance, priority 10] i3

example : foo.a = 1 := rfl

attribute [instance, priority std.priority.default-10] i1

example : foo.a = 2 := rfl

10.6 Coercions using Type Classes
The most basic type of coercion maps elements of one type to another. For example, a coercion from nat to int allows
us to view any element n : nat as an element of int. But some coercions depend on parameters; for example, for any
type α, we can view any element l : list α as an element of set α, namely, the set of elements occurring in the
list. The corresponding coercion is defined on the “family” of types list α, parameterized by α.
Lean allows us to declare three kinds of coercions:

148 Chapter 10. Type Classes

Theorem Proving in Lean, Release 3.23.0

• from a family of types to another family of types
• from a family of types to the class of sorts
• from a family of types to the class of function types

The first kind of coercion allows us to view any element of a member of the source family as an element of a corresponding
member of the target family. The second kind of coercion allows us to view any element of a member of the source family
as a type. The third kind of coercion allows us to view any element of the source family as a function. Let us consider
each of these in turn.
In Lean, coercions are implemented on top of the type class resolution framework. We define a coercion from α to β by
declaring an instance of has_coe α β. For example, we can define a coercion from bool to Prop as follows:

instance bool_to_Prop : has_coe bool Prop :=

〈λ b, b = tt〉

This enables us to use boolean terms in if-then-else expressions:

#reduce if tt then 3 else 5

#reduce if ff then 3 else 5

We can define a coercion from list α to set α as follows:

import data.set.basic

def list.to_set {α : Type*} : list α → set α
| [] := ∅
| (h::t) := {h} ∪ list.to_set t

instance list_to_set_coe (α : Type*) :

has_coe (list α) (set α) :=

〈list.to_set〉

def s : set nat := {1, 2}

def l : list nat := [3, 4]

#check s ∪ l -- set nat

Coercions are only considered if the given and expected types do not contain metavariables at elaboration time. In the
following example, when we elaborate the union operator, the type of [3, 2] is list ?m, and a coercion will not be
considered since it contains metavariables.

/- The following #check command produces an error. -/

-- #check s ∪ [3, 2]

We can work around this issue by using a type ascription.

#check s ∪ [(3:nat), 2]

-- or

#check s ∪ ([3, 2] : list nat)

In the examples above, you may have noticed the symbol ↑ produced by the #check commands. It is the lift operator,
↑t is notation for coe t. We can use this operator to force a coercion to be introduced in a particular place. It is also
helpful to make our intent clear, and work around limitations of the coercion resolution system.

10.6. Coercions using Type Classes 149

Theorem Proving in Lean, Release 3.23.0

#check s ∪ ↑[3, 2]

variables n m : nat

variable i : int

#check i + ↑n + ↑m
#check i + ↑(n + m)

#check ↑n + i

In the first two examples, the coercions are not strictly necessary since Lean will insert implicit nat → int coercions.
However, #check n + i would raise an error, because the expected type of i is nat in order to match the type of n,
and no int→ nat coercion exists). In the third example, we therefore insert an explicit ↑ to coerce n to int.
The standard library defines a coercion from subtype {x : α // p x} to α as follows:

instance coe_subtype {α : Type*} {p : α → Prop} :

has_coe {x // p x} α :=

〈λ s, subtype.val s〉

Lean will also chain coercions as necessary. Actually, the type class has_coe_t is the transitive closure of has_coe.
You may have noticed that the type of coe depends on has_lift_t, the transitive closure of the type class has_lift,
instead of has_coe_t. Every instance of has_coe_t is also an instance of has_lift_t, but the elaborator only
introduces automatically instances of has_coe_t. That is, to be able to coerce using an instance of has_lift_t, we
must use the operator ↑. In the standard library, we have the following instance:

namespace hidden

universes u v

instance lift_list {a : Type u} {b : Type v} [has_lift_t a b] :

has_lift (list a) (list b) :=

〈λ l, list.map (@coe a b _) l〉

variables s : list nat

variables r : list int

#check ↑s ++ r

end hidden

It is not an instance of has_coe because lists are frequently used for writing programs, and we do not want a linear-time
operation to be silently introduced by Lean, and potentially mask mistakes performed by the user. By forcing the user to
write ↑, she is making her intent clear to Lean.
Let us now consider the second kind of coercion. By the class of sorts, we mean the collection of universes Type u. A
coercion of the second kind is of the form

c : Π x1 : A1, ..., xn : An, F x1 ... xn → Type u

where F is a family of types as above. This allows us to write s : t whenever t is of type F a1 ... an. In other
words, the coercion allows us to view the elements of F a1 ... an as types. This is very useful when defining algebraic
structures in which one component, the carrier of the structure, is a Type. For example, we can define a semigroup as
follows:

universe u

structure Semigroup : Type (u+1) :=

(continues on next page)

150 Chapter 10. Type Classes

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
(carrier : Type u)

(mul : carrier → carrier → carrier)

(mul_assoc : ∀ a b c : carrier,

mul (mul a b) c = mul a (mul b c))

instance Semigroup_has_mul (S : Semigroup) :

has_mul (S.carrier) :=

〈S.mul〉

In other words, a semigroup consists of a type, carrier, and a multiplication, mul, with the property that the multipli-
cation is associative. The instance command allows us to write a * b instead of Semigroup.mul S a b whenever
we have a b : S.carrier; notice that Lean can infer the argument S from the types of a and b. The function
Semigroup.carrier maps the class Semigroup to the sort Type u:

#check Semigroup.carrier

If we declare this function to be a coercion, then whenever we have a semigroup S : Semigroup, we can write a : S

instead of a : S.carrier:

instance Semigroup_to_sort : has_coe_to_sort Semigroup (Type u) :=

{ coe := λ S, S.carrier }

example (S : Semigroup) (a b c : S) :

(a * b) * c = a * (b * c) :=

Semigroup.mul_assoc _ a b c

It is the coercion that makes it possible to write (a b c : S). Note that, we define an instance of has_coe_to_sort
Semigroup (Type u) instead of has_coe Semigroup (Type u). The reason is that when Lean needs a coercion to
sort, it only knows it needs a type, but, in general, the universe is not known. The second argument to has_coe_to_sort
is used to specify the universe we are coercing too.
By the class of function types, we mean the collection of Pi types Π z : B, C. The third kind of coercion has the form

c : Π x1 : A1, ..., xn : An, y : F x1 ... xn, Π z : B, C

where F is again a family of types and B and C can depend on x1, ..., xn, y. This makes it possible to write t s

whenever t is an element of F a1 ... an. In other words, the coercion enables us to view elements of F a1 ...

an as functions. Continuing the example above, we can define the notion of a morphism between semigroups S1 and S2.
That is, a function from the carrier of S1 to the carrier of S2 (note the implicit coercion) that respects the multiplication.
The projection morphism.mor takes a morphism to the underlying function:

instance Semigroup_to_sort : has_coe_to_sort Semigroup (Type u) :=

{ coe := λ S, S.carrier }

structure morphism (S1 S2 : Semigroup) :=

(mor : S1 → S2)

(resp_mul : ∀ a b : S1, mor (a * b) = (mor a) * (mor b))

#check @morphism.mor

As a result, it is a prime candidate for the third type of coercion.

instance morphism_to_fun (S1 S2 : Semigroup) :

has_coe_to_fun (morphism S1 S2) (λ _, S1 → S2) :=
(continues on next page)

10.6. Coercions using Type Classes 151

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
{ coe := λ m, m.mor }

lemma resp_mul {S1 S2 : Semigroup}

(f : morphism S1 S2) (a b : S1) :

f (a * b) = f a * f b :=

f.resp_mul a b

example (S1 S2 : Semigroup) (f : morphism S1 S2) (a : S1) :

f (a * a * a) = f a * f a * f a :=

calc

f (a * a * a) = f (a * a) * f a : by rw [resp_mul f]

... = f a * f a * f a : by rw [resp_mul f]

With the coercion in place, we can write f (a * a * a) instead of morphism.mor f (a * a * a). When the
morphism, f, is used where a function is expected, Lean inserts the coercion. Similar to has_coe_to_sort, we have
yet another class has_coe_to_fun for this class of coercions. The second argument λ _, S1 → S2 is used to specify
the function type we are coercing to. This type may depend on the type we are coercing from.
Finally, ⇑f and ↥S are notations for coe_fn f and coe_sort S. They are the coercion operators for the function and
sort classes.
We can instruct Lean’s pretty-printer to hide the operators ↑ and ⇑ with set_option.

theorem test (S1 S2 : Semigroup)

(f : morphism S1 S2) (a : S1) :

f (a * a * a) = f a * f a * f a :=

calc

f (a * a * a) = f (a * a) * f a : by rw [resp_mul f]

... = f a * f a * f a : by rw [resp_mul f]

#check @test

set_option pp.coercions false

#check @test

152 Chapter 10. Type Classes

CHAPTER

ELEVEN

AXIOMS AND COMPUTATION

We have seen that the version of the Calculus of Constructions that has been implemented in Lean includes dependent
function types, inductive types, and a hierarchy of universes that starts with an impredicative, proof-irrelevant Prop
at the bottom. In this chapter, we consider ways of extending the CIC with additional axioms and rules. Extending a
foundational system in such a way is often convenient; it can make it possible to prove more theorems, as well as make
it easier to prove theorems that could have been proved otherwise. But there can be negative consequences of adding
additional axioms, consequences which may go beyond concerns about their correctness. In particular, the use of axioms
bears on the computational content of definitions and theorems, in ways we will explore here.
Lean is designed to support both computational and classical reasoning. Users that are so inclined can stick to a “compu-
tationally pure” fragment, which guarantees that closed expressions in the system evaluate to canonical normal forms. In
particular, any closed computationally pure expression of type N, for example, will reduce to a numeral.
Lean’s standard library defines an additional axiom, propositional extensionality, and a quotient construction which in
turn implies the principle of function extensionality. These extensions are used, for example, to develop theories of sets
and finite sets. We will see below that using these theorems can block evaluation in Lean’s kernel, so that closed terms of
type N no longer evaluate to numerals. But Lean erases types and propositional information when compiling definitions
to bytecode for its virtual machine evaluator, and since these axioms only add new propositions, they are compatible with
that computational interpretation. Even computationally inclined users may wish to use the classical law of the excluded
middle to reason about computation. This also blocks evaluation in the kernel, but it is compatible with compilation to
bytecode.
The standard library also defines a choice principle that is entirely antithetical to a computational interpretation, since it
magically produces “data” from a proposition asserting its existence. Its use is essential to some classical constructions,
and users can import it when needed. But expressions that use this construction to produce data do not have computational
content, and in Lean we are required to mark such definitions as noncomputable to flag that fact.
Using a clever trick (known as Diaconescu’s theorem), one can use propositional extensionality, function extensionality,
and choice to derive the law of the excluded middle. As noted above, however, use of the law of the excluded middle is
still compatible with bytecode compilation and code extraction, as are other classical principles, as long as they are not
used to manufacture data.
To summarize, then, on top of the underlying framework of universes, dependent function types, and inductive types, the
standard library adds three additional components:

• the axiom of propositional extensionality
• a quotient construction, which implies function extensionality
• a choice principle, which produces data from an existential proposition.

The first two of these block normalization within Lean, but are compatible with bytecode evaluation, whereas the third is
not amenable to computational interpretation. We will spell out the details more precisely below.

153

Theorem Proving in Lean, Release 3.23.0

11.1 Historical and Philosophical Context
For most of its history, mathematics was essentially computational: geometry dealt with constructions of geometric ob-
jects, algebra was concerned with algorithmic solutions to systems of equations, and analysis provided means to compute
the future behavior of systems evolving over time. From the proof of a theorem to the effect that “for every x, there is a
y such that …”, it was generally straightforward to extract an algorithm to compute such a y given x.
In the nineteenth century, however, increases in the complexity of mathematical arguments pushed mathematicians to
develop new styles of reasoning that suppress algorithmic information and invoke descriptions of mathematical objects
that abstract away the details of how those objects are represented. The goal was to obtain a powerful “conceptual”
understanding without getting bogged down in computational details, but this had the effect of admitting mathematical
theorems that are simply false on a direct computational reading.
There is still fairly uniform agreement today that computation is important to mathematics. But there are different views as
to how best to address computational concerns. From a constructive point of view, it is a mistake to separate mathematics
from its computational roots; every meaningful mathematical theorem should have a direct computational interpretation.
From a classical point of view, it is more fruitful to maintain a separation of concerns: we can use one language and body
of methods to write computer programs, while maintaining the freedom to use a nonconstructive theories and methods
to reason about them. Lean is designed to support both of these approaches. Core parts of the library are developed
constructively, but the system also provides support for carrying out classical mathematical reasoning.
Computationally, the purest part of dependent type theory avoids the use of Prop entirely. Inductive types and dependent
function types can be viewed as data types, and terms of these types can be “evaluated” by applying reduction rules until
no more rules can be applied. In principle, any closed term (that is, term with no free variables) of type N should evaluate
to a numeral, succ (... (succ zero)...).
Introducing a proof-irrelevant Prop and marking theorems irreducible represents a first step towards separation of con-
cerns. The intention is that elements of a type p : Prop should play no role in computation, and so the particular
construction of a term t : p is “irrelevant” in that sense. One can still define computational objects that incorporate
elements of type Prop; the point is that these elements can help us reason about the effects of the computation, but can
be ignored when we extract “code” from the term. Elements of type Prop are not entirely innocuous, however. They
include equations s = t : α for any type α, and such equations can be used as casts, to type check terms. Below, we
will see examples of how such casts can block computation in the system. However, computation is still possible under
an evaluation scheme that erases propositional content, ignores intermediate typing constraints, and reduces terms until
they reach a normal form. This is precisely what Lean’s virtual machine does.
Having adopted a proof-irrelevant Prop, one might consider it legitimate to use, for example, the law of the excluded
middle, p ∨ ¬p, where p is any proposition. Of course, this, too, can block computation according to the rules of CIC,
but it does not block bytecode evaluation, as described above. It is only the choice principles discussed in Section 11.5
that completely erase the distinction between the proof-irrelevant and data-relevant parts of the theory.

11.2 Propositional Extensionality
Propositional extensionality is the following axiom:

axiom propext {a b : Prop} : (a ↔ b) → a = b

It asserts that when two propositions imply one another, they are actually equal. This is consistent with set-theoretic
interpretations in which any element a : Prop is either empty or the singleton set {*}, for some distinguished element
*. The axiom has the effect that equivalent propositions can be substituted for one another in any context:

section

variables a b c d e : Prop

variable p : Prop → Prop

(continues on next page)

154 Chapter 11. Axioms and Computation

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
theorem thm1 (h : a ↔ b) : (c ∧ a ∧ d → e) ↔ (c ∧ b ∧ d → e) :=

propext h ▶ iff.refl _

theorem thm2 (h : a ↔ b) (h1 : p a) : p b :=

propext h ▶ h1
end

The first example could be proved more laboriously without propext using the fact that the propositional connectives
respect propositional equivalence. The second example represents amore essential use of propext. In fact, it is equivalent
to propext itself, a fact which we encourage you to prove.
Given any definition or theorem in Lean, you can use the #print axioms command to display the axioms it depends
on.

#print axioms thm1 -- propext

#print axioms thm2 -- propext

11.3 Function Extensionality
Similar to propositional extensionality, function extensionality asserts that any two functions of type Π x : α, β x

that agree on all their inputs are equal.

universes u1 u2

#check (@funext : ∀ {α : Type u1} {β : α → Type u2}

{f1 f2 : Π (x : α), β x},

(∀ (x : α), f1 x = f2 x) → f1 = f2)

From a classical, set-theoretic perspective, this is exactly what it means for two functions to be equal. This is known as
an “extensional” view of functions. From a constructive perspective, however, it is sometimes more natural to think of
functions as algorithms, or computer programs, that are presented in some explicit way. It is certainly the case that two
computer programs can compute the same answer for every input despite the fact that they are syntactically quite different.
In much the same way, you might want to maintain a view of functions that does not force you to identify two functions
that have the same input / output behavior. This is known as an “intensional” view of functions.
In fact, function extensionality follows from the existence of quotients, which we describe in the next section. In the Lean
standard library, therefore, funext is thus proved from the quotient construction.
Suppose that for α : Type we define the set α := α → Prop to denote the type of subsets of α, essentially
identifying subsets with predicates. By combining funext and propext, we obtain an extensional theory of such sets:

def set (α : Type*) := α → Prop

namespace set

variable {α : Type*}

definition mem (x : α) (a : set α) := a x

notation (name := mem) e ∈ a := mem e a

theorem setext {a b : set α} (h : ∀ x, x ∈ a ↔ x ∈ b) : a = b :=

funext (assume x, propext (h x))

(continues on next page)

11.3. Function Extensionality 155

https://github.com/leanprover/lean/blob/master/library/init/funext.lean

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

end set

We can then proceed to define the empty set and set intersection, for example, and prove set identities:

definition empty : set α := λ x, false

local notation (name := empty) `∅` := empty

definition inter (a b : set α) : set α := λ x, x ∈ a ∧ x ∈ b

notation (name := inter) a ∩ b := inter a b

theorem inter_self (a : set α) : a ∩ a = a :=

setext (assume x, and_self _)

theorem inter_empty (a : set α) : a ∩ ∅ = ∅ :=

setext (assume x, and_false _)

theorem empty_inter (a : set α) : ∅ ∩ a = ∅ :=

setext (assume x, false_and _)

theorem inter.comm (a b : set α) : a ∩ b = b ∩ a :=

setext (assume x, and_comm _ _)

The following is an example of how function extensionality blocks computation inside the Lean kernel.

import data.nat.basic

def f1 (x : N) := x

def f2 (x : N) := 0 + x

theorem feq : f1 = f2 := funext (assume x, (zero_add x).symm)

def val : N := eq.rec_on feq (0 : N)

-- complicated!

#reduce val

-- evaluates to 0

#eval val

First, we show that the two functions f1 and f2 are equal using function extensionality, and then we cast 0 of type N by
replacing f1 by f2 in the type. Of course, the cast is vacuous, because N does not depend on f1. But that is enough to
do the damage: under the computational rules of the system, we now have a closed term of N that does not reduce to
a numeral. In this case, we may be tempted to reduce the expression to 0. But in nontrivial examples, eliminating cast
changes the type of the term, which might make an ambient expression type incorrect. The virtual machine, however,
has no trouble evaluating the expression to 0. Here is a similarly contrived example that shows how propext can get in
the way.

theorem tteq : (true ∧ true) = true := propext (and_true true)

def val : N := eq.rec_on tteq 0

-- complicated!
(continues on next page)

156 Chapter 11. Axioms and Computation

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
#reduce val

-- evaluates to 0

#eval val

Current research programs, including work on observational type theory and cubical type theory, aim to extend type theory
in ways that permit reductions for casts involving function extensionality, quotients, and more. But the solutions are not
so clear cut, and the rules of Lean’s underlying calculus do not sanction such reductions.
In a sense, however, a cast does not change the meaning of an expression. Rather, it is a mechanism to reason about
the expression’s type. Given an appropriate semantics, it then makes sense to reduce terms in ways that preserve their
meaning, ignoring the intermediate bookkeeping needed to make the reductions type correct. In that case, adding new
axioms in Prop does not matter; by proof irrelevance, an expression in Prop carries no information, and can be safely
ignored by the reduction procedures.

11.4 Quotients
Let α be any type, and let r be an equivalence relation on α. It is mathematically common to form the “quotient” α /

r, that is, the type of elements of α “modulo” r. Set theoretically, one can view α / r as the set of equivalence classes
of α modulo r. If f : α → β is any function that respects the equivalence relation in the sense that for every x y :

α, r x y implies f x = f y, then f “lifts” to a function f' : α / r → β defined on each equivalence class ⟦x⟧
by f' ⟦x⟧ = f x. Lean’s standard library extends the Calculus of Constructions with additional constants that perform
exactly these constructions, and installs this last equation as a definitional reduction rule.
In its most basic form, the quotient construction does not even require r to be an equivalence relation. The following
constants are built into Lean:

universes u v

constant quot : Π {α : Sort u}, (α → α → Prop) → Sort u

constant quot.mk :

Π {α : Sort u} (r : α → α → Prop), α → quot r

axiom quot.ind :

∀ {α : Sort u} {r : α → α → Prop} {β : quot r → Prop},

(∀ a, β (quot.mk r a)) → ∀ (q : quot r), β q

constant quot.lift :

Π {α : Sort u} {r : α → α → Prop} {β : Sort u} (f : α → β),
(∀ a b, r a b → f a = f b) → quot r → β

The first one forms a type quot r given a type α by any binary relation r on α. The second maps α to quot α, so that
if r : α → α → Prop and a : α, then quot.mk r a is an element of quot r. The third principle, quot.ind,
says that every element of quot.mk r a is of this form. As for quot.lift, given a function f : α → β, if h is
a proof that f respects the relation r, then quot.lift f h is the corresponding function on quot r. The idea is that
for each element a in α, the function quot.lift f h maps quot.mk r a (the r-class containing a) to f a, wherein
h shows that this function is well defined. In fact, the computation principle is declared as a reduction rule, as the proof
below makes clear.

variables α β : Type*

variable r : α → α → Prop

variable a : α
(continues on next page)

11.4. Quotients 157

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)

-- the quotient type

#check (quot r : Type*)

-- the class of a

#check (quot.mk r a : quot r)

variable f : α → β
variable h : ∀ a1 a2, r a1 a2 → f a1 = f a2

-- the corresponding function on quot r

#check (quot.lift f h : quot r → β)

-- the computation principle

theorem thm : quot.lift f h (quot.mk r a) = f a := rfl

The four constants, quot, quot.mk, quot.ind, and quot.lift in and of themselves are not very strong. You can
check that the quot.ind is satisfied if we take quot r to be simply α, and take quot.lift to be the identity function
(ignoring h). For that reason, these four constants are not viewed as additional axioms:

#print axioms thm -- no axioms

They are, like inductively defined types and the associated constructors and recursors, viewed as part of the logical frame-
work.
What makes the quot construction into a bona fide quotient is the following additional axiom:

axiom quot.sound :

∀ {α : Type*} {r : α → α → Prop} {a b : α},
r a b → quot.mk r a = quot.mk r b

This is the axiom that asserts that any two elements of α that are related by r become identified in the quotient. If a
theorem or definition makes use of quot.sound, it will show up in the #print axioms command.
Of course, the quotient construction is most commonly used in situations when r is an equivalence relation. Given r
as above, if we define r' according to the rule r' a b iff quot.mk r a = quot.mk r b, then it’s clear that r'
is an equivalence relation. Indeed, r' is the kernel of the function a 7→ quot.mk r a. The axiom quot.sound

says that r a b implies r' a b. Using quot.lift and quot.ind, we can show that r' is the smallest equivalence
relation containing r, in the sense that if r'' is any equivalence relation containing r, then r' a b implies r'' a b. In
particular, if r was an equivalence relation to start with, then for all a and b we have r a b iff r' a b.
To support this common use case, the standard library defines the notion of a setoid, which is simply a type with an
associated equivalence relation:

class setoid (α : Type*) :=

(r : α → α → Prop) (iseqv : equivalence r)

namespace setoid

infix (name := r) `≈` := setoid.r

variable {α : Type*}

variable [s : setoid α]
include s

(continues on next page)

158 Chapter 11. Axioms and Computation

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
theorem refl (a : α) : a ≈ a :=

(@setoid.iseqv α s).left a

theorem symm {a b : α} : a ≈ b → b ≈ a :=

λ h, (@setoid.iseqv α s).right.left h

theorem trans {a b c : α} : a ≈ b → b ≈ c → a ≈ c :=

λ h1 h2, (@setoid.iseqv α s).right.right h1 h2
end setoid

Given a type α, a relation r on α, and a proof p that r is an equivalence relation, we can define setoid.mk p as an
instance of the setoid class.

def quotient {α : Type*} (s : setoid α) :=

@quot α setoid.r

The constants quotient.mk, quotient.ind, quotient.lift, and quotient.sound are nothing more than the
specializations of the corresponding elements of quot. The fact that type class inference can find the setoid associated to
a type α brings a number of benefits. First, we can use the notation a ≈ b (entered with \approx) for setoid.r a b,
where the instance of setoid is implicit in the notation setoid.r. We can use the generic theorems setoid.refl,
setoid.symm, setoid.trans to reason about the relation. Specifically with quotients we can use the generic notation
⟦a⟧ for quot.mk setoid.r where the instance of setoid is implicit in the notation setoid.r, as well as the theorem
quotient.exact:

variables {α : Type*} [setoid α] (a b : α)

#check (quotient.exact : ⟦a⟧ = ⟦b⟧ → a ≈ b)

Together with quotient.sound, this implies that the elements of the quotient correspond exactly to the equivalence
classes of elements in α.
Recall that in the standard library, α × β represents the Cartesian product of the types α and β. To illustrate the use
of quotients, let us define the type of unordered pairs of elements of a type α as a quotient of the type α × α. First, we
define the relevant equivalence relation:

private definition eqv {α : Type*} (p1 p2 : α × α) : Prop :=

(p1.1 = p2.1 ∧ p1.2 = p2.2) ∨ (p1.1 = p2.2 ∧ p1.2 = p2.1)

infix (name := eqv) `~`:50 := eqv

The next step is to prove that eqv is in fact an equivalence relation, which is to say, it is reflexive, symmetric and transitive.
We can prove these three facts in a convenient and readable way by using dependent pattern matching to perform case-
analysis and break the hypotheses into pieces that are then reassembled to produce the conclusion.

open or

private theorem eqv.refl {α : Type*} :

∀ p : α × α, p ~ p :=

assume p, inl 〈rfl, rfl〉

private theorem eqv.symm {α : Type*} :

∀ p1 p2 : α × α, p1 ~ p2 → p2 ~ p1
| (a1, a2) (b1, b2) (inl 〈a1b1, a2b2〉) :=

(continues on next page)

11.4. Quotients 159

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
inl 〈symm a1b1, symm a2b2〉

| (a1, a2) (b1, b2) (inr 〈a1b2, a2b1〉) :=

inr 〈symm a2b1, symm a1b2〉

private theorem eqv.trans {α : Type*} :

∀ p1 p2 p3 : α × α, p1 ~ p2 → p2 ~ p3 → p1 ~ p3
| (a1, a2) (b1, b2) (c1, c2)

(inl 〈a1b1, a2b2〉) (inl 〈b1c1, b2c2〉) :=

inl 〈trans a1b1 b1c1, trans a2b2 b2c2〉
| (a1, a2) (b1, b2) (c1, c2)

(inl 〈a1b1, a2b2〉) (inr 〈b1c2, b2c1〉) :=

inr 〈trans a1b1 b1c2, trans a2b2 b2c1〉
| (a1, a2) (b1, b2) (c1, c2)

(inr 〈a1b2, a2b1〉) (inl 〈b1c1, b2c2〉) :=

inr 〈trans a1b2 b2c2, trans a2b1 b1c1〉
| (a1, a2) (b1, b2) (c1, c2)

(inr 〈a1b2, a2b1〉) (inr 〈b1c2, b2c1〉) :=

inl 〈trans a1b2 b2c1, trans a2b1 b1c2〉

private theorem is_equivalence (α : Type*) :

equivalence (@eqv α) :=

mk_equivalence (@eqv α) (@eqv.refl α) (@eqv.symm α)
(@eqv.trans α)

We open the namespaces or and eq to be able to use or.inl, or.inr, and eq.trans more conveniently.
Now that we have proved that eqv is an equivalence relation, we can construct a setoid (α × α), and use it to define
the type uprod α of unordered pairs.

instance uprod.setoid (α : Type*) : setoid (α × α) :=

setoid.mk (@eqv α) (is_equivalence α)

definition uprod (α : Type*) : Type* :=

quotient (uprod.setoid α)

namespace uprod

definition mk {α : Type*} (a1 a2 : α) : uprod α :=

⟦(a1, a2)⟧

local notation `{` a1 `,` a2 `}` := mk a1 a2
end uprod

Notice that we locally define the notation {a1, a2} for ordered pairs as ⟦(a1, a2)⟧. This is useful for illustrative
purposes, but it is not a good idea in general, since the notation will shadow other uses of curly brackets, such as for
records and sets.
We can easily prove that {a1, a2} = {a2, a1} using quot.sound, since we have (a1, a2) ~ (a2, a1).

theorem mk_eq_mk {α : Type*} (a1 a2 : α) :

{a1, a2} = {a2, a1} :=

quot.sound (inr 〈rfl, rfl〉)

To complete the example, given a : α and u : uprod α, we define the proposition a ∈ u which should hold if a
is one of the elements of the unordered pair u. First, we define a similar proposition mem_fn a u on (ordered) pairs;

160 Chapter 11. Axioms and Computation

Theorem Proving in Lean, Release 3.23.0

then we show that mem_fn respects the equivalence relation eqv with the lemma mem_respects. This is an idiom that
is used extensively in the Lean standard library.

private definition mem_fn {α : Type*} (a : α) :

α × α → Prop

| (a1, a2) := a = a1 ∨ a = a2

-- auxiliary lemma for proving mem_respects

private lemma mem_swap {α : Type*} {a : α} :

∀ {p : α × α}, mem_fn a p = mem_fn a (〈p.2, p.1〉)
| (a1, a2) := propext (iff.intro

(λ l : a = a1 ∨ a = a2,

or.elim l (λ h1, inr h1) (λ h2, inl h2))

(λ r : a = a2 ∨ a = a1,

or.elim r (λ h1, inr h1) (λ h2, inl h2)))

private lemma mem_respects {α : Type*} :

∀ {p1 p2 : α × α} (a : α),
p1 ~ p2 → mem_fn a p1 = mem_fn a p2

| (a1, a2) (b1, b2) a (inl 〈a1b1, a2b2〉) :=

by { dsimp at a1b1, dsimp at a2b2, rw [a1b1, a2b2] }

| (a1, a2) (b1, b2) a (inr 〈a1b2, a2b1〉) :=

by { dsimp at a1b2, dsimp at a2b1, rw [a1b2, a2b1],

apply mem_swap }

def mem {α : Type*} (a : α) (u : uprod α) : Prop :=

quot.lift_on u (λ p, mem_fn a p) (λ p1 p2 e, mem_respects a e)

local infix (name := mem) `∈` := mem

theorem mem_mk_left {α : Type*} (a b : α) : a ∈ {a, b} :=

inl rfl

theorem mem_mk_right {α : Type*} (a b : α) : b ∈ {a, b} :=

inr rfl

theorem mem_or_mem_of_mem_mk {α : Type*} {a b c : α} :

c ∈ {a, b} → c = a ∨ c = b :=

λ h, h

For convenience, the standard library also defines quotient.lift2 for lifting binary functions, and quotient.ind2
for induction on two variables.
We close this section with some hints as to why the quotient construction implies function extenionality. It is not hard
to show that extensional equality on the Π x : α, β x is an equivalence relation, and so we can consider the type
extfun α β of functions “up to equivalence.” Of course, application respects that equivalence in the sense that if f1
is equivalent to f2, then f1 a is equal to f2 a. Thus application gives rise to a function extfun_app : extfun α
β → Π x : α, β x. But for every f, extfun_app ⟦f⟧ is definitionally equal to λ x, f x, which is in turn
definitionally equal to f. So, when f1 and f2 are extensionally equal, we have the following chain of equalities:

f1 = extfun_app ⟦f1⟧ = extfun_app ⟦f2⟧ = f2

As a result, f1 is equal to f2.

11.4. Quotients 161

Theorem Proving in Lean, Release 3.23.0

11.5 Choice
To state the final axiom defined in the standard library, we need the nonempty type, which is defined as follows:

class inductive nonempty (α : Sort*) : Prop

| intro : α → nonempty

Because nonempty α has type Prop and its constructor contains data, it can only eliminate to Prop. In fact, nonempty
α is equivalent to ∃ x : α, true:

example (α : Type*) : nonempty α ↔ ∃ x : α, true :=

iff.intro (λ 〈a〉, 〈a, trivial〉) (λ 〈a, h〉, 〈a〉)

Our axiom of choice is now expressed simply as follows:

axiom choice {α : Sort*} : nonempty α → α

Given only the assertion h that α is nonempty, choice h magically produces an element of α. Of course, this blocks
any meaningful computation: by the interpretation of Prop, h contains no information at all as to how to find such an
element.
This is found in the classical namespace, so the full name of the theorem is classical.choice. The choice
principle is equivalent to the principle of indefinite description, which can be expressed with subtypes as follows:

noncomputable theorem indefinite_description

{α : Sort*} (p : α → Prop) :

(∃ x, p x) → {x // p x} :=

λ h, choice (let 〈x, px〉 := h in 〈〈x, px〉〉)

Because it depends on choice, Lean cannot generate bytecode for indefinite_description, and so requires us
to mark the definition as noncomputable. Also in the classical namespace, the function some and the property
some_spec decompose the two parts of the output of indefinite_description:

noncomputable def some {a : Sort*} {p : a → Prop}

(h : ∃ x, p x) : a :=

subtype.val (indefinite_description p h)

theorem some_spec {a : Sort*} {p : a → Prop}

(h : ∃ x, p x) : p (some h) :=

subtype.property (indefinite_description p h)

The choice principle also erases the distinction between the property of being nonempty and the more constructive
property of being inhabited:

noncomputable theorem inhabited_of_nonempty {α : Type*} :

nonempty α → inhabited α :=

λ h, choice (let 〈a〉 := h in 〈〈a〉〉)

In the next section, we will see that propext, funext, and choice, taken together, imply the law of the excluded middle
and the decidability of all propositions. Using those, one can strengthen the principle of indefinite description as follows:

#check (@strong_indefinite_description :

Π {α : Sort*} (p : α → Prop),

nonempty α → {x // (∃ (y : α), p y) → p x})

162 Chapter 11. Axioms and Computation

Theorem Proving in Lean, Release 3.23.0

Assuming the ambient typeα is nonempty, strong_indefinite_description p produces an element ofα satisfying
p if there is one. The data component of this definition is conventionally known as Hilbert’s epsilon function:

#check (@epsilon : Π {α : Sort*} [nonempty α],
(α → Prop) → α)

#check (@epsilon_spec : ∀ {a : Sort*} {p : a → Prop}

(hex : ∃ (y : a), p y),

p (@epsilon _ (nonempty_of_exists hex) p))

11.6 The Law of the Excluded Middle
The law of the excluded middle is the following

#check (@em : ∀ (p : Prop), p ∨ ¬p)

Diaconescu’s theorem states that the axiom of choice is sufficient to derive the law of excluded middle. More precisely,
it shows that the law of the excluded middle follows from classical.choice, propext, and funext. We sketch the
proof that is found in the standard library.
First, we import the necessary axioms, fix a parameter, p, and define two predicates U and V:

open classical

section diaconescu

parameter p : Prop

def U (x : Prop) : Prop := x = true ∨ p

def V (x : Prop) : Prop := x = false ∨ p

lemma exU : ∃ x, U x := 〈true, or.inl rfl〉
lemma exV : ∃ x, V x := 〈false, or.inl rfl〉

end diaconescu

If p is true, then every element of Prop is in both U and V. If p is false, then U is the singleton true, and V is the singleton
false.
Next, we use some to choose an element from each of U and V:

noncomputable def u := some exU

noncomputable def v := some exV

lemma u_def : U u := some_spec exU

lemma v_def : V v := some_spec exV

Each of U and V is a disjunction, so u_def and v_def represent four cases. In one of these cases, u = true and v =

false, and in all the other cases, p is true. Thus we have:

lemma not_uv_or_p : u 6= v ∨ p :=

or.elim u_def

(assume hut : u = true,

or.elim v_def

(assume hvf : v = false,

(continues on next page)

11.6. The Law of the Excluded Middle 163

http://en.wikipedia.org/wiki/Diaconescu%27s_theorem

Theorem Proving in Lean, Release 3.23.0

(continued from previous page)
have hne : u 6= v,

from eq.symm hvf ▶ eq.symm hut ▶ true_ne_false,

or.inl hne)

(assume hp : p, or.inr hp))

(assume hp : p, or.inr hp)

On the other hand, if p is true, then, by function extensionality and propositional extensionality, U and V are equal. By
the definition of u and v, this implies that they are equal as well.

lemma p_implies_uv : p → u = v :=

assume hp : p,

have hpred : U = V, from

funext (assume x : Prop,

have hl : (x = true ∨ p) → (x = false ∨ p), from

assume a, or.inr hp,

have hr : (x = false ∨ p) → (x = true ∨ p), from

assume a, or.inr hp,

show (x = true ∨ p) = (x = false ∨ p), from

propext (iff.intro hl hr)),

have h0 : ∀ exU exV,

@classical.some _ U exU = @classical.some _ V exV,

from hpred ▶ λ exU exV, rfl,

show u = v, from h0 _ _

Putting these last two facts together yields the desired conclusion:

theorem em : p ∨ ¬p :=

have h : ¬(u = v) → ¬p, from mt p_implies_uv,

or.elim not_uv_or_p

(assume hne : ¬(u = v), or.inr (h hne))

(assume hp : p, or.inl hp)

Consequences of excluded middle include double-negation elimination, proof by cases, and proof by contradiction, all of
which are described in Section 3.5. The law of the excluded middle and propositional extensionality imply propositional
completeness:

theorem prop_complete (a : Prop) : a = true ∨ a = false :=

or.elim (em a)

(λ t, or.inl (propext (iff.intro (λ h, trivial) (λ h, t))))

(λ f, or.inr (propext (iff.intro (λ h, absurd h f)

(λ h, false.elim h))))

Together with choice, we also get the stronger principle that every proposition is decidable. Recall that the class of
decidable propositions is defined as follows:

class inductive decidable (p : Prop)

| is_false : ¬ p → decidable

| is_true : p → decidable

In contrast to p ∨ ¬ p, which can only eliminate to Prop, the type decidable p is equivalent to the sum type p ⊕
¬ p, which can eliminate to any type. It is this data that is needed to write an if-then-else expression.
As an example of classical reasoning, we use some to show that if f : α → β is injective and α is inhabited, then f
has a left inverse. To define the left inverse linv, we use a dependent if-then-else expression. Recall that if h : c

164 Chapter 11. Axioms and Computation

Theorem Proving in Lean, Release 3.23.0

then t else e is notation for dite c (λ h : c, t) (λ h : ¬ c, e). In the definition of linv, choice
is used twice: first, to show that (∃ a : A, f a = b) is “decidable,” and then to choose an a such that f a = b.
Notice that we make prop_decidable a local instance to justify the if-then-else expression. (See also the discussion in
Section 10.4.)

open classical function

local attribute [instance] prop_decidable

noncomputable definition linv {α β : Type*} [h : inhabited α]
(f : α → β) : β → α :=

λ b : β, if ex : (∃ a : α, f a = b) then some ex else arbitrary α

theorem linv_comp_self {α β : Type*} {f : α → β}
[inhabited α] (inj : injective f) :

linv f ◦ f = id :=

funext (assume a,

have ex : ∃ a1 : α, f a1 = f a, from exists.intro a rfl,

have feq : f (some ex) = f a, from some_spec ex,

calc linv f (f a) = some ex : dif_pos ex

... = a : inj feq)

From a classical point of view, linv is a function. From a constructive point of view, it is unacceptable; because there is
no way to implement such a function in general, the construction is not informative.

11.6. The Law of the Excluded Middle 165

Theorem Proving in Lean, Release 3.23.0

166 Chapter 11. Axioms and Computation

BIBLIOGRAPHY

[CoHu88] Thierry Coquand and Gerard Huet. The calculus of constructions. Inf. Comput., 76(2-3):95–120, February
1988.

[Dybj94] Peter Dybjer. Inductive families. Formal Asp. Comput., 6(4):440–465, 1994.
[GoMM06] Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pattern matching. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning, and Computation,
Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, volume 4060 of Lecture Notes
in Computer Science, pages 521–540. Springer, 2006.

167

	Introduction
	Computers and Theorem Proving
	About Lean
	About this Book
	Acknowledgments

	Dependent Type Theory
	Simple Type Theory
	Types as Objects
	Function Abstraction and Evaluation
	Introducing Definitions
	Local Definitions
	Variables and Sections
	Namespaces
	Dependent Types
	Implicit Arguments
	Exercises

	Propositions and Proofs
	Propositions as Types
	Working with Propositions as Types
	Propositional Logic
	Conjunction
	Disjunction
	Negation and Falsity
	Logical Equivalence

	Introducing Auxiliary Subgoals
	Classical Logic
	Examples of Propositional Validities
	Exercises

	Quantifiers and Equality
	The Universal Quantifier
	Equality
	Calculational Proofs
	The Existential Quantifier
	More on the Proof Language
	Exercises

	Tactics
	Entering Tactic Mode
	Basic Tactics
	More Tactics
	Structuring Tactic Proofs
	Tactic Combinators
	Rewriting
	Using the Simplifier
	Exercises

	Interacting with Lean
	Importing Files
	More on Sections
	More on Namespaces
	Attributes
	More on Implicit Arguments
	Notation
	Coercions
	Displaying Information
	Setting Options
	Elaboration Hints
	Using the Library

	Inductive Types
	Enumerated Types
	Constructors with Arguments
	Inductively Defined Propositions
	Defining the Natural Numbers
	Other Recursive Data Types
	Tactics for Inductive Types
	Inductive Families
	Axiomatic Details
	Mutual and Nested Inductive Types
	Exercises

	Induction and Recursion
	Pattern Matching
	Wildcards and Overlapping Patterns
	Structural Recursion and Induction
	Well-Founded Recursion and Induction
	Mutual Recursion
	Dependent Pattern Matching
	Inaccessible Terms
	Match Expressions
	Exercises

	Structures and Records
	Declaring Structures
	Objects
	Inheritance

	Type Classes
	Type Classes and Instances
	Chaining Instances
	Inferring Notation
	Decidable Propositions
	Managing Type Class Inference
	Coercions using Type Classes

	Axioms and Computation
	Historical and Philosophical Context
	Propositional Extensionality
	Function Extensionality
	Quotients
	Choice
	The Law of the Excluded Middle

	Bibliography

