
The Lean Reference Manual
Release 3.3.0

Jeremy Avigad, Gabriel Ebner, and Sebastian Ullrich

Sep 06, 2018

CONTENTS

1 Using Lean 1
1.1 Using Lean Online . 1
1.2 Using Lean with VSCode . 1
1.3 Using Lean with Emacs . 2
1.4 Using the Package Manager . 3

2 Lexical Structure 7
2.1 Symbols and Commands . 7
2.2 Identifiers . 7
2.3 String Literals . 8
2.4 Char Literals . 8
2.5 Numeric Literals . 8
2.6 Quoted Symbols . 9
2.7 Doc Comments . 9
2.8 Field Notation . 9

3 Expressions 11
3.1 Universes . 11
3.2 Expression Syntax . 11
3.3 Implicit Arguments . 13
3.4 Basic Data Types and Assertions . 14
3.5 Constructors, Projections, and Matching . 15
3.6 Structured Proofs . 17
3.7 Computation . 18
3.8 Axioms . 19

4 Declarations 21
4.1 Declaration Names . 21
4.2 Contexts and Telescopes . 21
4.3 Basic Declarations . 22
4.4 Inductive Types . 23
4.5 Inductive Families . 26
4.6 Mutual and Nested Inductive Definitions . 28
4.7 The Equation Compiler . 29
4.8 Match Expressions . 32
4.9 Structures and Records . 33
4.10 Type Classes . 35

5 Other Commands 37
5.1 Universes and Variables . 37

i

5.2 Sections . 38
5.3 Namespaces . 38
5.4 Attributes . 40
5.5 Options . 41
5.6 Instructions . 42
5.7 Notation Declarations . 43

6 Tactics 45
6.1 Tactic Mode . 45
6.2 Basic Tactics . 46
6.3 Equality and Other Relations . 49
6.4 Structured Tactic Proofs . 49
6.5 Inductive Types . 50
6.6 Tactic Combinators . 53
6.7 The Rewriter . 53
6.8 The Simplifier and Congruence Closure . 54
6.9 Other Tactics . 55
6.10 Conversions . 56
6.11 The SMT State . 56

7 Programming 57
7.1 The Virtual Machine . 57
7.2 Monads . 57

8 Metaprogramming 59
8.1 Quotations . 59
8.2 User Defined Attributes . 59

9 Libraries 61
9.1 The Standard Library . 61
9.2 The Mathematics Library . 61
9.3 Other Libraries . 61
9.4 User-Maintained Libraries . 61

Bibliography 63

ii

CHAPTER

ONE

USING LEAN

1.1 Using Lean Online

You can run a Javascript version of Lean online in your browser. It is much slower than running a version
of Lean installed on your computer, but it provides a convenient way to experiment with the system.

The online version of Lean checks your input continuously. Error messages, warnings, and output appear
in the window on the right-hand side. The editor shares a number of features with Visual Studio Code;
for example, you can type unicode characters with a backslash, so \and yields the unicode symbol for
conjunction, and \a, \b, and \g yield the unicode α, β, and γ respectively.

1.2 Using Lean with VSCode

Assuming you have installed Lean and Visual Studio Code, you can add the Lean extension to VSCode
by clicking the extension icon in the view bar at left and searching for lean. Once you have installed the
extension, clicking on lean in the extensions panel provides additional information.

With the extension installed, if you create a file with the extension .lean and edit it, Lean will check the
file continuously as you type. For example, if you type the words #check id, the word #check is underlined
in green to indicate a response from the Lean server. Hovering over the word #check displays the response,
in this case, the type of the identity function.

1.2.1 Features

VSCode Intellisense suggests completions as you type. These are context sensitive: if you are typing an
identifier, it suggests suitable completions for identifiers, after import, it suggests modules to import, after
set_option, it suggests suitable options, and so on.

You can enter Unicode characters with a backslash. For example, \a inserts an α. You can see the commands
provided by the Lean extension by typing ctrl-shift-P on Windows/Linux or cmd-shift-P on a Mac, and
then typing lean into the search bar to filter the list. Typing ctrl-shift-enter opens up a message window
which shows you error messages, warnings, output, and goal information when in tactic mode.

Typing an underscore in an expression asks Lean to infer a suitable value for the expression and fill it in
automatically. In cases where Lean is unable to determine a value for the argument, the underscore is
highlighted, and the error message indicates the type of the “hole” that needs to be filled. This can be
extremely useful when constructing proofs incrementally. You can start typing a proof sketch, using either
sorry or an underscore for details you intend to fill in later. Assuming the proof is correct modulo these
missing pieces of information, the error message at an unfilled underscore tells you the type of the term you
need to construct, typically an assertion you need to justify.

1

https://leanprover.github.io/live/master
https://code.visualstudio.com

The Lean Reference Manual, Release 3.3.0

1.2.2 Multi-file Projects

If you want to work on a project with multiple files, use the package_manager to set up a project folder,
and then use Open Folder in the VSCode File menu to open the root directory for the project.

1.3 Using Lean with Emacs

Assuming you have installed Lean, Emacs, and the Lean Emacs mode according to the instructions on the
Lean Download page, you simply need to create a file with the extension .lean and edit it in Emacs. The file
will be checked continuously as you type. For example, if you type the words #check id, the word #check
is underlined in green to indicate a response from the Lean server. Hovering over the word #check displays
the response, in this case, the type of the identity function.

1.3.1 Features

Lean mode uses an Emacs package named Flycheck, as evidenced by the letters FlyC that appear in the
information line. Flycheck offers a number of commands that begin with C-c !. For example, C-c ! n
moves the cursor to the next error, and C-c ! p moves the cursor to the previous error. You can get to a
help menu that lists these key bindings by clicking on the FlyC tag.

It is often inconvenient to have to put the cursor on a highlighted identifier to see an error message or the
outcome of a #print or #check command. The keystrokes C-c C-n toggle Lean-Next-Error mode, in which
the next message (or all the messages that occur on the line that the cursor is on, if there are any) appears
in a buffer named lean-info. You can position this window anywhere you want using Emacs commands for
splitting windows and loading buffers. Pressing C-c C-n again toggles the mode off.

As with VSCode, the Emacs mode provides context-sensitive tab completion. Typing an underscore in an
expression asks Lean to infer a suitable value for the expression and fill it in automatically. As described in
the previous section, this provides a convenient way to construct terms and proof interactively.

If you put your cursor on an identifier and hit M-., Emacs will take you to the identifier’s definition, whether
it is in the same file, in another file in your project , or in the library. This works even in an autocompletion
popup window: if you start typing an identifier, press the tab key, choose a completion from the list of
options, and press M-., you are taken to the symbol’s definition. If you have Emacs 25 or later, you can then
press M-, to go back to the original location.

In tactic mode, if you put your cursor on a tactic (or the keyword begin or end) and type C-c C-g, Emacs
will show you the goal in the lean-info buffer. Here is another useful trick: if you see some notation in a
Lean file and you want to know how to enter it from the keyboard, put the cursor on the symbol and type
C-c C-k.

If for some reason the Lean background process does not seem to be responding (for example, the information
line no longer shows you type information), type C-c C-r or M-x lean-server-restart-process, or choose
“restart lean process” from the Lean menu, and with luck that will set things right again.

In Lean, the #exit command halts processing of a file abruptly. Inserting an #exit therefore prevents Lean
from checking the file beyond that point.

Some of the main key bindings are summarized in the table below.

2 Chapter 1. Using Lean

https://leanprover.github.io/download/

The Lean Reference Manual, Release 3.3.0

Key Function
M-. jump to definition in source file (lean-find-definition)
M-, return to original position (requires Emacs 25)
TAB tab complete identifier, option, filename, etc. (lean-tab-indent-or-complete)
C-c C-k shows the keystroke needed to input the symbol under the cursor
C-c C-g show goal in tactic proof (lean-show-goal-at-pos)
C-c C-x execute lean in stand-alone mode (lean-std-exe)
C-c C-n toggle next-error-mode: shows next error in dedicated lean-info buffer
C-c C-r restart the lean server
C-c ! n flycheck: go to next error
C-c ! p flycheck: go to previous error
C-c ! l flycheck: show list of errors

1.3.2 Multi-file Projects

If you want to work on a project with multiple files, use the package_manager to set up a project folder,
and use Open Folder in the VSCode File menu to open the root directory for the project.

1.4 Using the Package Manager

leanpkg is the package manager for the Lean theorem prover. It downloads dependencies and manages what
modules you can import in your Lean files.

This section explains the general concepts of leanpkg. For more information on a specific leanpkg command,
execute leanpkg help <command> as a command line.

1.4.1 Directory Layout

A Lean package is a directory containing the following items:

• src: a directory in which the package’s Lean files are stored. Imports from other packages are resolved
relative to this directory.

• leanpkg.toml: a manifest describing the package name, version, and dependencies. Dependencies
can be either local paths or git URLs. Git dependencies are pinned to a specific commit and can be
upgraded with leanpkg upgrade.

• leanpkg.path and _target/deps: these items are created by leanpkg configure and should not
be added to git. They contain the paths to the dependencies on the current machine, and their git
checkouts, respectively.

1.4.2 Using Lean in a Lean package

• Running the lean command-line tool from a directory inside your package will automatically use the
leanpkg.path file for import resolution.

• In Emacs, lean-mode will automatically start a new Lean server process for each visited package.

• In VSCode, open the package as a folder.

1.4. Using the Package Manager 3

The Lean Reference Manual, Release 3.3.0

1.4.3 Creating new packages

The leanpkg new command creates a new package. You can use leanpkg add to add dependencies (or add
them manually if you prefer):

leanpkg new my_awesome_pkg
cd my_awesome_pkg
leanpkg add leanprover/mathlib
shorthand for `leanpkg add https://github.com/leanprover/mathlib`

You can now add new .lean files inside the src directory.

1.4.4 Scratch files

It is reasonably common to have thousands of “scratch” files lying around that are not part of a package. Files
that are not inside a package themselves can still use dependencies fetched via leanpkg. These dependencies
are stored in ~/.lean/leanpkg.toml and can be modified with leanpkg install:

leanpkg install https://github.com/leanprover/smt2_interface

After this, you can use the smt2_interface package in all files that do not belong to a package themselves.

For experimenting inside a Lean package, you can use a directory separate from src, say scratch. Files
in this folder will still be able to import the package’s Lean modules, but will not interfere with leanpkg
build etc.

1.4.5 Import resolution

Lean supports two kinds of imports:

import theory.set_theory -- absolute
import .basic -- relative

Relative imports are always relative to the current file name.

Absolute imports are resolved according to the entries in the leanpkg.path file. That is, when executing
import theory.set_theory, Lean looks for a file called theory/set_theory.lean in the src directories of
all (transitive) dependencies as well as the current package.

1.4.6 Format of leanpkg.toml

[package]
name = "my_awesome_pkg"
version = "0.1" # no semantic significance currently
lean_version = "3.3.0" # optional, prints a warning on mismatch with Lean executable
path = "src" # hard-coded, will be removed in the future
timeout = 100 # optional, passed to `lean` as `-T` parameter

[dependencies]
local dependency
demopkg = { path = "relative/path/to/demopkg" }
git dependency
mathlib =

4 Chapter 1. Using Lean

The Lean Reference Manual, Release 3.3.0

{ git = "https://github.com/leanprover/mathlib",
rev = "62f7883d937861b618ae8bd645ee16ec137dd0bd" }

1.4. Using the Package Manager 5

The Lean Reference Manual, Release 3.3.0

6 Chapter 1. Using Lean

CHAPTER

TWO

LEXICAL STRUCTURE

This section describes the detailed lexical structure of the Lean language. Many readers will want to skip
this section on a first reading.

Lean input is processed into a stream of tokens by its scanner, using the UTF-8 encoding. The next token
is the longest matching prefix of the remaining input.

token ::= symbol | command | ident | string | char | numeral |
decimal | quoted_symbol | doc_comment | mod_doc_comment |
field_notation

Tokens can be separated by the whitespace characters space, tab, line feed, and carriage return, as well as
comments. Single-line comments start with --, whereas multi-line comments are enclosed by /- and -/ and
can be nested.

2.1 Symbols and Commands

Symbols are static tokens that are used in term notations and commands. They can be both keyword-like
(e.g. the have keyword) or use arbitrary Unicode characters.

Command tokens are static tokens that prefix any top-level declaration or action. They are usually keyword-
like, with transitory commands like #print prefixed by an additional #. The set of built-in commands is
listed in the Chapter 5 section.

Users can dynamically extend the sets of both symbols (via the commands listed in Section 2.6) and command
tokens (via the [user_command] attribute).

2.2 Identifiers

An atomic identifier, or atomic name, is (roughly) an alphanumeric string that does not begin with a numeral.
A (hierarchical) identifier, or name, consists of one or more atomic names separated by periods.

Parts of atomic names can be escaped by enclosing them in pairs of French double quotes «».

def foo.«bar.baz» := 0 -- name parts ["foo", "bar.baz"]

ident ::= atomic_ident | ident "." atomic_ident
atomic_ident ::= atomic_ident_start atomic_ident_rest*

7

The Lean Reference Manual, Release 3.3.0

atomic_ident_start ::= letterlike | "_" | escaped_ident_part
letterlike ::= [a-zA-Z] | greek | coptic | letterlike_symbols
greek ::= <[α-ωA-Ω�-�] except for [λΠΣ]>
coptic ::= [�-�]
letterlike_symbols ::= [�-�]
escaped_ident_part ::= "«" [^«»\r\n\t]* "»"
atomic_ident_rest ::= atomic_ident_start | [0-9'�] | subscript
subscript ::= [0-9�-�i-�]

2.3 String Literals

String literals are enclosed by double quotes ("). They may contain line breaks, which are conserved in the
string value.

string ::= '"' string_item '"'
string_item ::= string_char | string_escape
string_char ::= [^\\]
string_escape ::= "\" ("\" | '"' | "'" | "n" | "t" | "x" hex_char hex_char)
hex_char ::= [0-9a-fA-F]

2.4 Char Literals

Char literals are enclosed by single quotes (').

char ::= "'" string_item "'"

2.5 Numeric Literals

Numeric literals can be specified in various bases.

numeral ::= numeral10 | numeral2 | numeral8 | numeral16
numeral10 ::= [0-9]+
numeral2 ::= "0" [bB] [0-1]+
numeral8 ::= "0" [oO] [0-7]+
numeral16 ::= "0" [xX] hex_char+

Decimal literals are currently only being used for some set_option values.

decimal ::= [0-9]+ "." [0-9]+

8 Chapter 2. Lexical Structure

The Lean Reference Manual, Release 3.3.0

2.6 Quoted Symbols

In a fixed set of commands (notation, local notation, and reserve), symbols (known or unknown) can
be quoted by enclosing them in backticks (`). Quoted symbols are used by these commands for registering
new notations and symbols.

quoted_symbol ::= "`" " "* quoted_symbol_start quoted_symbol_rest* " "* "`"
quoted_symbol_start ::= [^0-9"\n\t `]
quoted_symbol_rest ::= [^"\n\t `]

A quoted symbol may contain surrounding whitespace, which is customarily used for pretty printing the
symbol and ignored while scanning.

While backticks are not allowed in a user-defined symbol, they are used in some built-in symbols (see
Quotations), which are accessible outside of the set of commands noted above.

2.7 Doc Comments

A special form of comments, doc comments are used to document modules and declarations.

doc_comment ::= "/--" ([^-] | "-" [^/])* "-/"
mod_doc_comment ::= "/-!" ([^-] | "-" [^/])* "-/"

2.8 Field Notation

Trailing field notation tokens are used in expressions such as (1+1).to_string. Note that a.to_string is
a single identifier, but may be interpreted as a field notation expression by the parser.

field_notation ::= "." ([0-9]+ | atomic_ident)

2.8. Field Notation 9

The Lean Reference Manual, Release 3.3.0

10 Chapter 2. Lexical Structure

CHAPTER

THREE

EXPRESSIONS

3.1 Universes

Every type in Lean is, by definition, an expression of type Sort u for some universe level u. A universe level
is one of the following:

• a natural number, n

• a universe variable, u (declared with the command universe or universes)

• an expression u + n, where u is a universe level and n is a natural number

• an expression max u v, where u and v are universes

• an expression imax u v, where u and v are universe levels

The last one denotes the universe level 0 if v is 0, and max u v otherwise.

universes u v

#check Sort u
#check Sort 5
#check Sort (u + 1)
#check Sort (u + 3)
#check Sort (max u v)
#check Sort (max (u + 3) v)
#check Sort (imax (u + 3) v)
#check Prop
#check Type

3.2 Expression Syntax

The set of expressions in Lean is defined inductively as follows:

• Sort u : the universe of types at universe level u

• c : where c is an identifier denoting an axiomatically declared constant or a defined object

• x : where x is a variable in the local context in which the expression is interpreted

• Π x : α, β : the type of functions taking an element x of α to an element of β, where β is an
expression whose type is a Sort

• s t : the result of applying s to t, where s and t are expressions

• λ x : α, t : the function mapping any value x of type α to t, where t is an expression

11

The Lean Reference Manual, Release 3.3.0

• let x := t in s : a local definition, denotes the value of s when x is replaced by t

Every well formed term in Lean has a type, which itself is an expression of type Sort u for some u. The fact
that a term t has type α is written t : α.

For an expression to be well formed, its components have to satisfy certain typing constraints. These, in
turn, determine the type of the resulting term, as follows:

• Sort u : Sort (u + 1)

• c : α, where α is the type that c has been declared or defined to have

• x : α, where α is the type that x has been assigned in the local context where it is interpreted

• (Π x : α, β) : Sort (imax u v) where α : Sort u, and β : Sort v assuming x : α

• s t : β[t/x] where s has type Π x : α, β and t has type α

• (λ x : α, t) : Π x : α, β if t has type β whenever x has type α

• (let x := t in s) : β[t/x] where t has type α and s has type β assuming x : α

Prop abbreviates Sort 0, Type abbreviates Sort 1, and Type u abbreviates Sort (u + 1) when u is a
universe variable. We say “α is a type” to express α : Type u for some u, and we say “p is a proposition”
to express p : Prop. Using the propositions as types correspondence, given p : Prop, we refer to an
expression t : p as a proof of p. In contrast, given α : Type u for some u and t : α, we sometimes refer
to t as data.

When the expression β in Π x : α, β does not depend on x, it can be written α → β. As usual, the
variable x is bound in Π x : α, β, λ x : α, t, and let x := t in s. The expression ∀ x : α, β is
alternative syntax for Π x : α, β, and is intended to be used when β is a proposition. An underscore can
be used to generate an internal variable in a binder, as in λ _ : α, t.

In addition to the elements above, expressions can also contain metavariables, that is, temporary placeholders,
that are used in the process of constructing terms. They can also contain macros, which are used to annotate
or abbreviate terms. Terms that are added to the environment contain neither metavariable nor variables,
which is to say, they are fully elaborated and make sense in the empty context.

Constants can be declared in various ways, such as by the constant(s) and axiom(s) keywords, or as the
result of an inductive or structure declaration. Similarly, objects can be defined in various ways, such as
using def, theorem, or the equation compiler. See Chapter 4 for more information.

Writing an expression (t : α) forces Lean to elaborate t so that it has type α or report an error if it fails.

Lean supports anonymous constructor notation, anonymous projections, and various forms of match syntax,
including destructuring λ and let. These, as well as notation for common data types (like pairs, lists, and
so on) are discussed in Chapter 4 in connection with inductive types.

universes u v w

variables (p q : Prop)
variable (α : Type u)
variable (β : Type v)
variable (γ : α → Type w)
variable (η : α → β → Type w)

constants δ ϵ : Type u
constants cnst : δ
constant f : δ → ϵ

variables (a : α) (b : β) (c : γ a) (d : δ)

variable g : α → β

12 Chapter 3. Expressions

The Lean Reference Manual, Release 3.3.0

variable h : Π x : α, γ x
variable h' : Π x, γ x → δ

#check Sort (u + 3)
#check Prop
#check Π x : α, γ x
#check f cnst
#check λ x, h x
#check λ x, h' x (h x)
#check (λ x, h x) a
#check λ _ : N, 5
#check let x := a in h x

#check Π x y, η x y
#check Π (x : α) (y : β), η x y
#check λ x y, η x y
#check λ (x : α) (y : β), η x y
#check let x := a, y := b in η x y

#check (5 : N)
#check (5 : (λ x, x) N)
#check (5 : Z)

3.3 Implicit Arguments

When declaring arguments to defined objects in Lean (for example, with def, theorem, constant, inductive,
or structure; see Chapter 4) or when declaring variables and parameters in sections (see Chapter 5),
arguments can be annotated as explicit or implicit. This determines how expressions containing the object
are interpreted.

• (x : α) : an explicit argument of type α

• {x : α} : an implicit argument, eagerly inserted

• {|x : α|} or {{x : α}} : an implicit argument, weakly inserted

• [x : α] : an implicit argument that should be inferred by type class resolution

• (x : α := t) : an optional argument, with default value t

• (x : α . t) : an implicit argument, to be synthesized by tactic t

The name of the variable can be omitted from a class resolution argument, in which case an internal name
is generated.

When a function has an explicit argument, you can nonetheless ask Lean’s elaborator to infer the argu-
ment automatically, by entering it as an underscore (_). Conversely, writing @foo indicates that all of the
arguments to be foo are to be given explicitly, independent of how foo was declared.

universe u

def ex1 (x y z : N) : N := x + y + z

#check ex1 1 2 3

def id1 (α : Type u) (x : α) : α := x

#check id1 nat 3

3.3. Implicit Arguments 13

The Lean Reference Manual, Release 3.3.0

#check id1 _ 3

def id2 {α : Type u} (x : α) : α := x

#check id2 3
#check @id2 N 3
#check (id2 : N → N)

def id3 {{α : Type u}} (x : α) : α := x

#check id3 3
#check @id3 N 3
#check (id3 : Π α : Type, α → α)

class cls := (val : N)
instance cls_five : cls := ⟨5⟩

def ex2 [c : cls] : N := c.val

example : ex2 = 5 := rfl

def ex2a [cls] : N := ex2

example : ex2a = 5 := rfl

def ex3 (x : N := 5) := x

#check ex3 2
#check ex3
example : ex3 = 5 := rfl

meta def ex_tac : tactic unit := tactic.refine ``(5)

def ex4 (x : N . ex_tac) := x

example : ex4 = 5 := rfl

3.4 Basic Data Types and Assertions

The core library contains a number of basic data types, such as the natural numbers (N, or nat), the
integers (Z), the booleans (bool), and common operations on these, as well as the usual logical quantifiers
and connectives. Some example are given below. A list of common notations and their precedences can be
found in a file in the core library. The core library also contains a number of basic data type constructors.
Definitions can also be found the data directory of the core library. For more information, see also Chapter
9.

/- numbers -/
section
variables a b c d : N
variables i j k : Z

#check a^2 + b^2 + c^2
#check (a + b)^c ≤ d
#check i | j * k
end

14 Chapter 3. Expressions

https://github.com/leanprover/lean/blob/master/library/init/core.lean
https://github.com/leanprover/lean/blob/master/library/init/data

The Lean Reference Manual, Release 3.3.0

/- booleans -/
section
variables a b c : bool

#check a && (b || c)
end

/- pairs -/
section
variables (a b c : N) (p : N × bool)

#check (1, 2)
#check p.1 * 2
#check p.2 && tt
#check ((1, 2, 3) : N × N × N)
end

/- lists -/
section
variables x y z : N
variables xs ys zs : list N
open list

#check (1 :: xs) ++ (y :: zs) ++ [1,2,3]
#check append (cons 1 xs) (cons y zs)
#check map (λ x, x^2) [1, 2, 3]
end

/- sets -/
section
variables s t u : set N

#check ({1, 2, 3} ∩ s) ∪ ({x | x < 7} ∩ t)
end

/- strings and characters -/
#check "hello world"
#check 'a'

/- assertions -/
#check ∀ a b c n : N,

a ̸= 0 ∧ b ̸= 0 ∧ c ̸= 0 ∧ n > 2 → a^n + b^n ̸= c^n

def unbounded (f : N → N) : Prop := ∀ M, ∃ n, f n ≥ M

3.5 Constructors, Projections, and Matching

Lean’s foundation, the Calculus of Inductive Constructions, supports the declaration of inductive types. Such
types can have any number of constructors, and an associated eliminator (or recursor). Inductive types with
one constructor, known as structures, have projections. The full syntax of inductive types is described in
Chapter 4, but here we describe some syntactic elements that facilitate their use in expressions.

When Lean can infer the type of an expression and it is an inductive type with one constructor, then one
can write ⟨a1, a2, ..., an⟩ to apply the constructor without naming it. For example, ⟨a, b⟩ denotes

3.5. Constructors, Projections, and Matching 15

The Lean Reference Manual, Release 3.3.0

prod.mk a b in a context where the expression can be inferred to be a pair, and ⟨h1, h2⟩ denotes and.
intro h1 h2 in a context when the expression can be inferred to be a conjunction. The notation will nest
constructions automatically, so ⟨a1, a2, a3⟩ is interpreted as prod.mk a1 (prod.mk a2 a3) when the
expression is expected to have a type of the form α1 × α2 × α3. (The latter is interpreted as α1 × (α2
× α3), since the product associates to the right.)

Similarly, one can use “dot notation” for projections: one can write p.fst and p.snd for prod.fst p and
prod.snd p when Lean can infer that p is an element of a product, and h.left and h.right for and.left
h and and.right h when h is a conjunction.

The anonymous projector notation can used more generally for any objects defined in a namespace (see
Chapter 5). For example, if l has type list α then l.map f abbreviates list.map f l, in which l has
been placed at the first argument position where list.map expects a list.

Finally, for data types with one constructor, one destruct an element by pattern matching using the let and
assume constructs, as in the examples below. Internally, these are interpreted using the match construct,
which is in turn compiled down for the eliminator for the inductive type, as described in Chapter 4.

universes u v
variables {α : Type u} {β : Type v}

def p : N × Z := ⟨1, 2⟩
#check p.fst
#check p.snd

def p' : N × Z × bool := ⟨1, 2, tt⟩
#check p'.fst
#check p'.snd.fst
#check p'.snd.snd

def swap_pair (p : α × β) : β × α :=
⟨p.snd, p.fst⟩

theorem swap_conj {a b : Prop} (h : a ∧ b) : b ∧ a :=
⟨h.right, h.left⟩

#check [1, 2, 3].append [2, 3, 4]
#check [1, 2, 3].map (λ x, x^2)

example (p q : Prop) : p ∧ q → q ∧ p :=
λ h, ⟨h.right, h.left⟩

def swap_pair' (p : α × β) : β × α :=
let (x, y) := p in (y, x)

theorem swap_conj' {a b : Prop} (h : a ∧ b) : b ∧ a :=
let ⟨ha, hb⟩ := h in ⟨hb, ha⟩

def swap_pair'' : α × β → β × α :=
λ ⟨x, y⟩, (y, x)

theorem swap_conj'' {a b : Prop} : a ∧ b → b ∧ a :=
assume ⟨ha, hb⟩, ⟨hb, ha⟩

16 Chapter 3. Expressions

The Lean Reference Manual, Release 3.3.0

3.6 Structured Proofs

Syntactic sugar is provided for writing structured proof terms:

• assume h : p, t is sugar for λ h : p, t

• have h : p, from s, t is sugar for (λ h : p, t) s

• suffices h : p, from s, t is sugar for (λ h : p, s) t

• show p, t is sugar for (t : p)

As with λ, multiple variables can be bound with assume, and types can be omitted when they can be inferred
by Lean. Lean also allows the syntax assume : p, t, which gives the assumption the name this in the
local context. Similarly, Lean recognizes the variants have p, from s, t and suffices p, from s, t,
which use the name this for the new hypothesis.

The notation ‹p› is notation for (by assumption : p), and can therefore be used to apply hypotheses in
the local context.

As noted in Section 3.5, anonymous constructors and projections and match syntax can be used in proofs
just as in expressions that denote data.

example (p q r : Prop) : p → (q ∧ r) → p ∧ q :=
assume h1 : p,
assume h2 : q ∧ r,
have h3 : q, from and.left h2,
show p ∧ q, from and.intro h1 h3

example (p q r : Prop) : p → (q ∧ r) → p ∧ q :=
assume : p,
assume : q ∧ r,
have q, from and.left this,
show p ∧ q, from and.intro ‹p› this

example (p q r : Prop) : p → (q ∧ r) → p ∧ q :=
assume h1 : p,
assume h2 : q ∧ r,
suffices h3 : q, from and.intro h1 h3,
show q, from and.left h2

Lean also supports a calculational environment, which is introduced with the keyword calc. The syntax is
as follows:

calc
<expr>_0 'op_1' <expr>_1 ':' <proof>_1
'...' 'op_2' <expr>_2 ':' <proof>_2
...

'...' 'op_n' <expr>_n ':' <proof>_n

Each <proof>_i is a proof for <expr>_{i-1} op_i <expr>_i.

Here is an example:

variables (a b c d e : N)
variable h1 : a = b
variable h2 : b = c + 1
variable h3 : c = d
variable h4 : e = 1 + d

3.6. Structured Proofs 17

The Lean Reference Manual, Release 3.3.0

theorem T : a = e :=
calc

a = b : h1
... = c + 1 : h2
... = d + 1 : congr_arg _ h3
... = 1 + d : add_comm d (1 : N)
... = e : eq.symm h4

The style of writing proofs is most effective when it is used in conjunction with the simp and rewrite tactics.

3.7 Computation

Two expressions that differ up to a renaming of their bound variables are said to be α-equivalent, and are
treated as syntactically equivalent by Lean.

Every expression in Lean has a natural computational interpretation, unless it involves classical elements
that block computation, as described in the next section. The system recognizes the following notions of
reduction:

• β-reduction : An expression (λ x, t) s β-reduces to t[s/x], that is, the result of replacing x by s
in t.

• ζ-reduction : An expression let x := s in t ζ-reduces to t[s/x].

• δ-reduction : If c is a defined constant with definition t, then c δ-reduces to to t.

• ι-reduction : When a function defined by recursion on an inductive type is applied to an element given
by an explicit constructor, the result ι-reduces to the specified function value, as described in Section
4.4.

The reduction relation is transitive, which is to say, is s reduces to s' and t reduces to t', then s t reduces
to s' t', λ x, s reduces to λ x, s', and so on. If s and t reduce to a common term, they are said to be
definitionally equal. Definitional equality is defined to be the smallest equivalence relation that satisfies all
these properties and also includes α-equivalence and the following two relations:

• η-equivalence : An expression (λx, t x) is η-equivalent to t, assuming x does not occur in t.

• proof irrelevance : If p : Prop, s : p, and t : p, then s and t are considered to be equivalent.

This last fact reflects the intuition that once we have proved a proposition p, we only care that is has been
proved; the proof does nothing more than witness the fact that p is true.

Definitional equality is a strong notion of equalty of values. Lean’s logical foundations sanction treating
definitionally equal terms as being the same when checking that a term is well-typed and/or that it has a
given type.

The reduction relation is believed to be strongly normalizing, which is to say, every sequence of reductions
applied to a term will eventually terminate. The property guarantees that Lean’s type-checking algorithm
terminates, at least in principle. The consistency of Lean and its soundness with respect to set-theoretic
semantics do not depend on either of these properties.

Lean provides two commands to compute with expressions:

• #reduce t : use the kernel type-checking procedures to carry out reductions on t until no more
reductions are possible, and show the result

• #eval t : evaluate t using a fast bytecode evaluator, and show the result

Every computable definition in Lean is compiled to bytecode at definition time. Bytecode evaluation is
more liberal than kernel evaluation: types and all propositional information are erased, and functions are

18 Chapter 3. Expressions

The Lean Reference Manual, Release 3.3.0

evaluated using a stack-based virtual machine. As a result, #eval is more efficient than #reduce, and can
be used to execute complex programs. In contrast, #reduce is designed to be small and reliable, and to
produce type-correct terms at each step. Bytecode is never used in type checking, so as far as soundness
and consistency are concerned, only kernel reduction is part of the trusted computing base.

#reduce (λ x, x + 3) 5
#eval (λ x, x + 3) 5

#reduce let x := 5 in x + 3
#eval let x := 5 in x + 3

def f x := x + 3

#reduce f 5
#eval f 5

#reduce @nat.rec (λ n, N) (0 : N)
(λ n recval : N, recval + n + 1) (5 : N)

#eval @nat.rec (λ n, N) (0 : N)
(λ n recval : N, recval + n + 1) (5 : N)

def g : N → N
| 0 := 0
| (n+1) := g n + n + 1

#reduce g 5
#eval g 5

#eval g 50000

example : (λ x, x + 3) 5 = 8 := rfl
example : (λ x, f x) = f := rfl
example (p : Prop) (h1 h2 : p) : h1 = h2 := rfl

Note: the combination of proof irrelevance and singleton Prop elimination in ι-reduction renders the ideal
version of definitional equality, as described above, undecidable. Lean’s procedure for checking definitional
equality is only an approximation to the ideal. It is not transitive, as illustrated by the example below.
Once again, this does not compromise the consistency or soundness of Lean; it only means that Lean is more
conservative in the terms it recognizes as well typed, and this does not cause problems in practice. Singleton
elimination will be discussed in greater detail in Section 4.4.

def R (x y : unit) := false
def accrec := @acc.rec unit R (λ_, unit) (λ _ a ih, ()) ()
example (h) : accrec h = accrec (acc.intro _ (λ y, acc.inv h)) :=

rfl
example (h) : accrec (acc.intro _ (λ y, acc.inv h)) = () := rfl
example (h) : accrec h = () := sorry -- rfl fails

3.8 Axioms

Lean’s foundational framework consists of:

• type universes and dependent function types, as described above

• inductive definitions, as described in Section 4.4 and Section 4.5.

In addition, the core library defines (and trusts) the following axiomatic extensions:

3.8. Axioms 19

The Lean Reference Manual, Release 3.3.0

• propositional extensionality:

axiom propext {a b : Prop} : (a ↔ b) → a = b

• quotients:

universes u v

constant quot : Π {α : Sort u}, (α → α → Prop) → Sort u

constant quot.mk : Π {α : Sort u} (r : α → α → Prop),
α → quot r

axiom quot.ind : ∀ {α : Sort u} {r : α → α → Prop}
{β : quot r → Prop},

(∀ a, β (quot.mk r a)) →
∀ (q : quot r), β q

constant quot.lift : Π {α : Sort u} {r : α → α → Prop}
{β : Sort u} (f : α → β),

(∀ a b, r a b → f a = f b) → quot r → β

axiom quot.sound : ∀ {α : Type u} {r : α → α → Prop}
{a b : α},

r a b → quot.mk r a = quot.mk r b

quot r represents the quotient of α by the smallest equivalence relation containing r. quot.mk and
quot.lift satisfy the following computation rule:

quot.lift f h (quot.mk r a) = f a

• choice:

axiom choice {α : Sort u} : nonempty α → α

Here nonempty α is defined as follows:

class inductive nonempty (α : Sort u) : Prop
| intro : α → nonempty

It is equivalent to ∃ x : α, true.

The quotient construction implies function extensionality. The choice principle, in conjunction with the
others, makes the axiomatic foundation classical; in particular, it implies the law of the excluded middle
and propositional decidability. Functions that make use of choice to produce data are incompatible with a
computational interpretation, and do not produce bytecode. They have to be declared noncomputable.

For metaprogramming purposes, Lean also allows the definition of objects which stand outside the object
language. These are denoted with the meta keyword, as described in Chapter 7.

20 Chapter 3. Expressions

CHAPTER

FOUR

DECLARATIONS

4.1 Declaration Names

A declaration name is a hierarchical identifier that is interpreted relative to the current namespace as well
as (during lookup) to the set of open namespaces.

namespace a
constant b.c : N
#print b.c -- constant a.b.c : N

end a

#print a.b.c -- constant a.b.c : N
open a
#print b.c -- constant a.b.c : N

Declaration names starting with an underscore are reserved for internal use. Names starting with the special
atomic name _root_ are interpreted as absolute names.

constant a : N
namespace a

constant a : Z
#print _root_.a -- constant a : N
#print a.a -- constant a.a : Z

end a

4.2 Contexts and Telescopes

When processing user input, Lean first parses text to a raw expression format. It then uses background
information and type constants to disambiguate overloaded symbols and infer implicit arguments, resulting
in a fully-formed expression. This process is known as elaboration.

As hinted in Section 3.2, expressions are parsed and elaborated with respect to an environment and a local
context. Roughly speaking, an environment represents the state of Lean at the point where an expression is
parsed, including previously declared axioms, constants, definitions, and theorems. In a given environment,
a local context consists of a sequence (a1 : α1) (a2 : α2) ... (an : αn) where each ai is a name
denoting a local constant and each αi is an expression of type Sort u for some u which can involve elements
of the environment and the local constants aj for j < i.

Intuitively, a local context is a list of variables that are held constant while an expression is being elaborated.
Consider the following example:

21

The Lean Reference Manual, Release 3.3.0

def f (a b : N) : N → N := λ c, a + (b + c)

Here the expression λ c, a + (b + c) is elaborated in the context (a : N) (b : N) and the expression
a + (b + c) is elaborated in the context (a : N) (b : N) (c : N). If you replace the expression a +
(b + c) with an underscore, the error message from Lean will include the current goal:

a b c : N
⊢ N

Here a b c : N indicates the local context, and the second N indicates the expected type of the result.

A context is sometimes called a telescope, but the latter is used more generally to include a sequence of
declarations occuring relative to a given context. For example, relative to the context (a1 : α1) (a2 :
α2) ... (an : αn), the types βi in a telescope (b1 : β1) (b2 : β2) ... (bn : βn) can refer to a1,
..., an. Thus a context can be viewed as a telescope relative to the empty context.

Telescopes are often used to describe a list of arguments, or parameters, to a declaration. In such cases, it
is often notationally convenient to let (a : α) stand for a telescope rather than just a single argument. In
general, the annotations described in Implicit Arguments can be used to mark arguments as implicit.

4.3 Basic Declarations

Lean provides ways of adding new objects to the environment. The following provide straightforward ways
of declaring new objects:

• constant c : α : declares a constant named c of type α, where c is a declaration name.

• axiom c : α : alternative syntax for constant

• def c : α := t : defines c to denote t, which should have type α.

• theorem c : p := t : similar to def, but intended to be used when p is a proposition.

• lemma c : p := t : alternative syntax for theorem

It is sometimes useful to be able to simulate a definition or theorem without naming it or adding it to the
environment.

• example : α := t : elaborates t and checks that it has sort α (often a proposition), without adding
it to the environment.

constant and axiom have plural versions, constants and axioms.

In def, the type (α or p, respectively) can be omitted when it can be inferred by Lean. Constants declared
with theorem or lemma are marked as irreducible.

Any of def, theorem, lemma, or example can take a list of arguments (that is, a context) before the colon. If
(a : α) is a context, the definition def foo (a : α) : β := t is interpreted as def foo : Π a : α,
β := λ a : α, t. Similarly, a theorem theorem foo (a : α) : p := t is interpreted as theorem foo
: ∀ a : α, p := assume a : α, t. (Remember that ∀ is syntactic sugar for Π, and assume is syntactic
sugar for λ.)

constant c : N
constants (d e : N) (f : N → N)
axiom cd_eq : c = d

def foo : N := 5
def bar := 6
def baz (x y : N) (s : list N) := [x, y] ++ s

22 Chapter 4. Declarations

The Lean Reference Manual, Release 3.3.0

theorem foo_eq_five : foo = 5 := rfl
theorem baz_theorem (x y : N) : baz x y [] = [x, y] := rfl
lemma baz_lemma (x y : N) : baz x y [] = [x, y] := rfl

example (x y : N) : baz x y [] = [x, y] := rfl

4.4 Inductive Types

Lean’s axiomatic foundation allows users to declare arbitrary inductive families, following the pattern de-
scribed by [Dybjer]. To make the presentation more manageable, we first describe inductive types, and then
describe the generalization to inductive families in the next section. The declaration of an inductive type
has the following form:

inductive foo (a : α) : Sort u
| constructor1 : Π (b : β1), foo
| constructor2 : Π (b : β2), foo
...
| constructorn : Π (b : βn), foo

Here (a : α) is a context and each (b : βi) is a telescope in the context (a : α) together with (foo :
Sort u), subject to the following constraints.

Suppose the telescope (b : βi) is (b1 : βi1) ... (bu : βiu). Each argument in the telescope is either
nonrecursive or recursive.

• An argument (bj : βij) is nonrecursive if βij does not refer to foo, the inductive type being defined.
In that case, βij can be any type, so long as it does not refer to any nonrecursive arguments.

• An argument (bj : βij) is recursive if it βij of the form Π (d : δ), foo where (d : δ) is a
telescope which does not refer to foo or any nonrecursive arguments.

The inductive type foo represents a type that is freely generated by the constructors. Each constructor can
take arbitrary data and facts as arguments (the nonrecursive arguments), as well as indexed sequences of
elements of foo that have been previously constructed (the recursive arguments). In set theoretic models,
such sets can be represented by well-founded trees labeled by the constructor data, or they can defined using
other transfinite or impredicative means.

The declaration of the type foo as above results in the addition of the following constants to the environment:

• the type former foo : Π (a : α), Sort u

• for each i, the constructor foo.constructori : Π (a : α) (b : βi), foo a

• the eliminator foo.rec, which takes arguments

– (a : α) (the parameters)

– {C : foo a → Type u} (the motive of the elimination)

– for each i, the minor premise corresponding to constructori
– (x : foo) (the major premise)

and returns an element of C x. Here, The ith minor premise is a function which takes

– (b : βi) (the arguments to the constructor)

– an argument of type Π (d : δ), C (bj d) corresponding to each recursive argument (bj :
βij), where βij is of the form Π (d : δ), foo (the recursive values of the function being defined)

4.4. Inductive Types 23

The Lean Reference Manual, Release 3.3.0

and returns an element of C (constructori a b), the intended value of the function at constructori
a b.

The eliminator represents a principle of recursion: to construct an element of C x where x : foo a, it
suffices to consider each of the cases where x is of the form constructori a b and to provide an auxiliary
construction in each case. In the case where some of the arguments to constructori are recursive, we can
assume that we have already constructed values of C y for each value y constructed at an earlier stage.

Under the propositions-as-type correspondence, when C x is an element of Prop, the eliminator represents
a principle of induction. In order to show ∀ x, C x, it suffices to show that C holds for each constructor,
under the inductive hypothesis that it holds for all recursive inputs to the constructor.

The eliminator and constructors satisfy the following identities, in which all the arguments are shown ex-
plicitly. Suppose we set F := foo.rec a C f1 ... fn. Then for each constructor, we have the definitional
reduction:

F (constructori a b) = fi b ... (λ d : δij, F (bj d)) ...

where the ellipses include one entry for each recursive argument.

Below are some common examples of inductive types, many of which are defined in the core library.

inductive empty : Type

inductive unit : Type
| star : unit

inductive bool : Type
| ff : bool
| tt : bool

inductive prod (α : Type u) (β : Type v) : Type (max u v)
| mk : α → β → prod

inductive sum (α : Type u) (β : Type v)
| inl : α → sum
| inr : β → sum

inductive sigma (α : Type u) (β : α → Type v)
| mk : Π a : α, β a → sigma

inductive false : Prop

inductive true : Prop
| trivial : true

inductive and (p q : Prop) : Prop
| intro : p → q → and

inductive or (p q : Prop) : Prop
| inl : p → or
| inr : q → or

inductive Exists (α : Type u) (p : α → Prop) : Prop
| intro : ∀ x : α, p x → Exists

inductive subtype (α : Type u) (p : α → Prop) : Type u
| intro : ∀ x : α, p x → subtype

24 Chapter 4. Declarations

The Lean Reference Manual, Release 3.3.0

inductive nat : Type
| zero : nat
| succ : nat → nat

inductive list (α : Type u)
| nil : list
| cons : α → list → list

-- full binary tree with nodes and leaves labeled from α
inductive bintree (α : Type u)
| leaf : α → bintree
| node : bintree → α → bintree → bintree

-- every internal node has subtrees indexed by N
inductive cbt (α : Type u)
| leaf : α → cbt
| node : (N → cbt) → cbt

Note that in the syntax of the inductive definition foo, the context (a : α) is left implicit. In other words,
constructors and recursive arguments are written as though they have return type foo rather than foo a.

Elements of the context (a : α) can be marked implicit as described in Section 3.3. These annotations
bear only on the type former, foo. Lean uses a heuristic to determine which arguments to the constructors
should be marked implicit, namely, an argument is marked implicit if it can be inferred from the type of
a subsequent argument. If the annotation {} appears after the constructor, a argument is marked implicit
if it can be inferred from the type of a subsequent argument or the return type. For example, it is useful
to let nil denote the empty list of any type, since the type can usually be inferred in the context in which
it appears. These heuristics are imperfect, and you may sometimes wish to define your own constructors
in terms of the default ones. In that case, use the [pattern] attribute to ensure that these will be used
appropriately by the equation compiler.

There are restrictions on the universe u in the return type Sort u of the type former. There are also
restrictions on the universe u in the return type Sort u of the motive of the eliminator. These will be
discussed in the next section in the more general setting of inductive families.

Lean allows some additional syntactic conveniences. You can omit the return type of the type former, Sort
u, in which case Lean will infer the minimal possible nonzero value for u. As with function definitions, you
can list arguments to the constructors before the colon. In an enumerated type (that is, one where the
constructors have no arguments), you can also leave out the return type of the constructors.

inductive weekday
| sunday | monday | tuesday | wednesday
| thursday | friday | saturday

inductive nat
| zero
| succ (n : nat) : nat

inductive list (α : Type u)
| nil {} : list
| cons (a : α) (l : list) : list

@[pattern]
def list.nil' (α : Type u) : list α := list.nil

def length {α : Type u} : list α → N
| (list.nil' .(α)) := 0
| (list.cons a l) := 1 + length l

4.4. Inductive Types 25

The Lean Reference Manual, Release 3.3.0

The type former, constructors, and eliminator are all part of Lean’s axiomatic foundation, which is to say,
they are part of the trusted kernel. In addition to these axiomatically declared constants, Lean automatically
defines some additional objects in terms of these, and adds them to the environment. These include the
following:

• foo.rec_on : a variant of the eliminator, in which the major premise comes first

• foo.cases_on : a restricted version of the eliminator which omits any recursive calls

• foo.no_confusion_type, foo.no_confusion : functions which witness the fact that the inductive
type is freely generated, i.e. that the constructors are injective and that distinct constructors produce
distinct objects

• foo.below, foo.ibelow : functions used by the equation compiler to implement structural recursion

• foo.sizeof : a measure which can be used for well-founded recursion

Note that it is common to put definitions and theorems related to a datatype foo in a namespace of the
same name. This makes it possible to use projection notation described in Section 4.9 and Section 5.3.

inductive nat
| zero
| succ (n : nat) : nat

#check nat
#check nat.rec
#check nat.zero
#check nat.succ

#check nat.rec_on
#check nat.cases_on
#check nat.no_confusion_type
#check @nat.no_confusion
#check nat.brec_on
#check nat.below
#check nat.ibelow
#check nat.sizeof

4.5 Inductive Families

In fact, Lean implements a slight generalization of the inductive types described in the previous section,
namely, inductive families. The declaration of an inductive family in Lean has the following form:

inductive foo (a : α) : Π (c : γ), Sort u
| constructor1 : Π (b : β1), foo t1
| constructor2 : Π (b : β2), foo t2
...
| constructorn : Π (b : βn), foo tn

Here (a : α) is a context, (c : γ) is a telescope in context (a : α), each (b : βi) is a telescope in the
context (a : α) together with (foo : Π (c : γ), Sort u) subject to the constraints below, and each
ti is a tuple of terms in the context (a : α) (b : βi) having the types γ. Instead of defining a single
inductive type foo a, we are now defining a family of types foo a c indexed by elements c : γ. Each
constructor, constructori, places its result in the type foo a ti, the member of the family with index ti.

26 Chapter 4. Declarations

The Lean Reference Manual, Release 3.3.0

The modifications to the scheme in the previous section are straightforward. Suppose the telescope (b :
βi) is (b1 : βi1) ... (bu : βiu).

• As before, an argument (bj : βij) is nonrecursive if βij does not refer to foo, the inductive type
being defined. In that case, βij can be any type, so long as it does not refer to any nonrecursive
arguments.

• An argument (bj : βij) is recursive if βij is of the form Π (d : δ), foo s where (d : δ) is a
telescope which does not refer to foo or any nonrecursive arguments and s is a tuple of terms in context
(a : α) and the previous nonrecursive bj ’s with types γ.

The declaration of the type foo as above results in the addition of the following constants to the environment:

• the type former foo : Π (a : α) (c : γ), Sort u

• for each i, the constructor foo.constructori : Π (a : α) (b : βi), foo a ti
• the eliminator foo.rec, which takes arguments

– (a : α) (the parameters)

– {C : Π (c : γ), foo a c → Type u} (the motive of the elimination)

– for each i, the minor premise corresponding to constructori
– (x : foo a) (the major premise)

and returns an element of C x. Here, The ith minor premise is a function which takes

– (b : βi) (the arguments to the constructor)

– an argument of type Π (d : δ), C s (bj d) corresponding to each recursive argument (bj :
βij), where βij is of the form Π (d : δ), foo s

and returns an element of C ti (constructori a b).

Suppose we set F := foo.rec a C f1 ... fn. Then for each constructor, we have the definitional reduc-
tion, as before:

F (constructori a b) = fi b ... (λ d : δij, F (bj d)) ...

where the ellipses include one entry for each recursive argument.

The following are examples of inductive families.

inductive vector (α : Type u) : N → Type u
| nil : vector 0
| succ : Π n, vector n → vector (n + 1)

-- 'is_prod s n' means n is a product of elements of s
inductive is_prod (s : set N) : N → Prop
| base : ∀ n ∈ s, is_prod n
| step : ∀ m n, is_prod m → is_prod n → is_prod (m * n)

inductive eq {α : Sort u} (a : α) : α → Prop
| refl : eq a

We can now describe the constraints on the return type of the type former, Sort u. We can always take
u to be 0, in which case we are defining an inductive family of propositions. If u is nonzero, however, it
must satisfy the following constraint: for each type βij : Sort v occurring in the constructors, we must
have u ≥ v. In the set-theoretic interpretation, this ensures that the universe in which the resulting type
resides is large enough to contain the inductively generated family, given the number of distinctly-labeled
constructors. The restriction does not hold for inductively defined propositions, since these contain no data.

4.5. Inductive Families 27

The Lean Reference Manual, Release 3.3.0

Putting an inductive family in Prop, however, does impose a restriction on the eliminator. Generally speak-
ing, for an inductive family in Prop, the motive in the eliminator is required to be in Prop. But there is an
exception to this rule: you are allowed to eliminate from an inductively defined Prop to an arbitrary Sort
when there is only one constructor, and each argument to that constructor is either in Prop or an index. The
intuition is that in this case the elimination does not make use of any information that is not already given
by the mere fact that the type of argument is inhabited. This special case is known as singleton elimination.

4.6 Mutual and Nested Inductive Definitions

Lean supports two generalizations of the inductive families described above, namely, mutual and nested
inductive definitions. These are not implemented natively in the kernel. Rather, the definitions are compiled
down to the primitive inductive types and families.

The first generalization allows for multiple inductive types to be defined simultaneously.

mutual inductive foo, bar (a : α)
with foo : Π (c : γ), Sort u
| constructor11 : Π (b : β11), foo t11
| constructor12 : Π (b : β12), foo t12
...
| constructor1n : Π (b : β1n), foo t1n
with bar :
| constructor21 : Π (b : β21), bar t21
| constructor22 : Π (b : β22), bar t22
...
| constructor2m : Π (b : β2m), bar t2m

Here the syntax is shown for defining two inductive families, foo and bar, but any number is allowed.
The restrictions are almost the same as for ordinary inductive families. For example, each (b : βij) is a
telescope relative to the context (a : α). The difference is that the constructors can now have recursive
arguments whose return types are any of the inductive families currently being defined, in this case foo and
bar. Note that all of the inductive definitions share the same parameters (a : α), though they may have
different indices.

A mutual inductive definition is compiled down to an ordinary inductive definition using an extra finite-
valued index to distinguish the components. The details of the internal construction are meant to be hidden
from most users. Lean defines the expected type formers foo and bar and constructors constructorij from
the internal inductive definition. There is no straightforward elimination principle, however. Instead, Lean
defines an appropriate sizeof measure, meant for use with well-founded recursion, with the property that
the recursive arguments to a constructor are smaller than the constructed value.

The second generalization relaxes the restriction that in the recursive definition of foo, foo can only occur
strictly positively in the type of any of its recursive arguments. Specifically, in a nested inductive definition,
foo can appear as an argument to another inductive type constructor, so long as the corresponding parameter
occurs strictly positively in the constructors for that inductive type. This process can be iterated, so that
additional type constructors can be applied to those, and so on.

A nested inductive definition is compiled down to an ordinary inductive definition using a mutual inductive
definition to define copies of all the nested types simultaneously. Lean then constructs isomorphisms between
the mutually defined nested types and their independently defined counterparts. Once again, the internal
details are not meant to be manipulated by users. Rather, the type former and constructors are made
available and work as expected, while an appropriate sizeof measure is generated for use with well-founded
recursion.

mutual inductive even, odd
with even : N → Prop

28 Chapter 4. Declarations

The Lean Reference Manual, Release 3.3.0

| even_zero : even 0
| even_succ : ∀ n, odd n → even (n + 1)
with odd : N → Prop
| odd_succ : ∀ n, even n → odd (n + 1)

inductive tree (α : Type u)
| mk : α → list tree → tree

inductive double_tree (α : Type u)
| mk : α → list double_tree × list double_tree → double_tree

4.7 The Equation Compiler

The equation compiler takes an equational description of a function or proof and tries to define an object
meeting that specification. It expects input with the following syntax:

def foo (a : α) : Π (b : β), γ
| [patterns1] := t1
...
| [patternsn] := tn

Here (a : α) is a telescope, (b : β) is a telescope in the context (a : α), and γ is an expression in the
context (a : α) (b : β) denoting a Type or a Prop.

Each patternsi is a sequence of patterns of the same length as (b : β). A pattern is either:

• a variable, denoting an arbitrary value of the relevant type,

• an underscore, denoting a wildcard or anonymous variable,

• an inaccessible term (see below), or

• a constructor for the inductive type of the corresponding argument, applied to a sequence of patterns.

In the last case, the pattern must be enclosed in parentheses.

Each term ti is an expression in the context (a : α) together with the variables introduced on the left-hand
side of the token :=. The term ti can also include recursive calls to foo, as described below. The equation
compiler does case splitting on the variables (b : β) as necessary to match the patterns, and defines foo
so that it has the value ti in each of the cases. In ideal circumstances (see below), the equations hold
definitionally. Whether they hold definitionally or only propositionally, the equation compiler proves the
relevant equations and assigns them internal names. They are accessible by the rewrite and simp tactics
under the name foo (see Section 6.7 and Section 6.8). If some of the patterns overlap, the equation compiler
interprets the definition so that the first matching pattern applies in each case. Thus, if the last pattern is a
variable, it covers all the remaining cases. If the patterns that are presented do not cover all possible cases,
the equation compiler raises an error.

When identifiers are marked with the [pattern] attribute, the equation compiler unfolds them in the hopes
of exposing a constructor. For example, this makes it possible to write n+1 and 0 instead of nat.succ n
and nat.zero in patterns.

For a nonrecursive definition involving case splits, the defining equations will hold definitionally. With
inductive types like char, string, and fin n, a case split would produce definitions with an inordinate
number of cases. To avoid this, the equation compiler uses if ... then ... else instead of cases_on
when defining the function. In this case, the defining equations hold definitionally as well.

4.7. The Equation Compiler 29

The Lean Reference Manual, Release 3.3.0

open nat

def sub2 : N → N
| zero := 0
| (succ zero) := 0
| (succ (succ a)) := a

def bar : N → list N → bool → N
| 0 _ ff := 0
| 0 (b :: _) _ := b
| 0 [] tt := 7
| (a+1) [] ff := a
| (a+1) [] tt := a + 1
| (a+1) (b :: _) _ := a + b

def baz : char → N
| 'A' := 1
| 'B' := 2
| _ := 3

If any of the terms ti in the template above contain a recursive call to foo, the equation compiler tries
to interpret the definition as a structural recursion. In order for that to succeed, the recursive arguments
must be subterms of the corresponding arguments on the left-hand side. The function is then defined using
a course of values recursion, using automatically generated functions below and brec in the namespace
corresponding to the inductive type of the recursive argument. In this case the defining equations hold
definitionally, possibly with additional case splits.

def fib : nat → nat
| 0 := 1
| 1 := 1
| (n+2) := fib (n+1) + fib n

def append {α : Type} : list α → list α → list α
| [] l := l
| (h::t) l := h :: append t l

example : append [(1 : N), 2, 3] [4, 5] = [1, 2, 3, 4, 5] := rfl

If structural recursion fails, the equation compiler falls back on well-founded recursion. It tries to infer an
instance of has_sizeof for the type of each argument, and then show that each recursive call is decreasing
under the lexicographic order of the arguments with respect to sizeof measure. If it fails, the error message
provides information as to the goal that Lean tried to prove. Lean uses information in the local context,
so you can often provide the relevant proof manually using have in the body of the definition. In this case
of well-founded recursion, the defining equations hold only propositionally, and can be accessed using simp
and rewrite with the name foo.

def div : N → N → N
| x y :=

if h : 0 < y ∧ y ≤ x then
have x - y < x,

from sub_lt (lt_of_lt_of_le h.left h.right) h.left,
div (x - y) y + 1

else
0

example (x y : N) :
div x y = if 0 < y ∧ y ≤ x then div (x - y) y + 1 else 0 :=

30 Chapter 4. Declarations

The Lean Reference Manual, Release 3.3.0

by rw [div]

Note that recursive definitions can in general require nested recursions, that is, recursion on different argu-
ments of foo in the template above. The equation compiler handles this by abstracting later arguments,
and recursively defining higher-order functions to meet the specification.

The equation compiler also allows mutual recursive definitions, with a syntax similar to that of mutual induc-
tive definitions. They are compiled using well-founded recursion, and so once again the defining equations
hold only propositionally.

mutual def even, odd
with even : N → bool
| 0 := tt
| (a+1) := odd a
with odd : N → bool
| 0 := ff
| (a+1) := even a

example (a : N) : even (a + 1) = odd a :=
by simp [even]

example (a : N) : odd (a + 1) = even a :=
by simp [odd]

Well-founded recursion is especially useful with mutual and nested inductive definitions, since it provides the
canonical way of defining functions on these types.

mutual inductive even, odd
with even : N → Prop
| even_zero : even 0
| even_succ : ∀ n, odd n → even (n + 1)
with odd : N → Prop
| odd_succ : ∀ n, even n → odd (n + 1)

open even odd

theorem not_odd_zero : ¬ odd 0.

mutual theorem even_of_odd_succ, odd_of_even_succ
with even_of_odd_succ : ∀ n, odd (n + 1) → even n
| _ (odd_succ n h) := h
with odd_of_even_succ : ∀ n, even (n + 1) → odd n
| _ (even_succ n h) := h

inductive term
| const : string → term
| app : string → list term → term

open term

mutual def num_consts, num_consts_lst
with num_consts : term → nat
| (term.const n) := 1
| (term.app n ts) := num_consts_lst ts
with num_consts_lst : list term → nat
| [] := 0
| (t::ts) := num_consts t + num_consts_lst ts

4.7. The Equation Compiler 31

The Lean Reference Manual, Release 3.3.0

The case where patterns are matched against an argument whose type is an inductive family is known
as dependent pattern matching. This is more complicated, because the type of the function being defined
can impose constraints on the patterns that are matched. In this case, the equation compiler will detect
inconsistent cases and rule them out.

universe u

inductive vector (α : Type u) : N → Type u
| nil {} : vector 0
| cons : Π {n}, α → vector n → vector (n+1)

namespace vector

def head {α : Type} : Π {n}, vector α (n+1) → α
| n (cons h t) := h

def tail {α : Type} : Π {n}, vector α (n+1) → vector α n
| n (cons h t) := t

def map {α β γ : Type} (f : α → β → γ) :
Π {n}, vector α n → vector β n → vector γ n

| 0 nil nil := nil
| (n+1) (cons a va) (cons b vb) := cons (f a b) (map va vb)

end vector

An expression of the form .(t) in a pattern is known as an inaccessible term. It is not viewed as part of
the pattern; rather, it is explicit information that is used by the elaborator and equation compiler when
interpreting the definition. Inaccessible terms do not participate in pattern matching. They are sometimes
needed for a pattern to make sense, for example, when a constructor depends on a parameter that is not
a pattern-matching variable. In other cases, they can be used to inform the equation compiler that certain
arguments do not require a case split, and they can be used to make a definition more readable.

variable {α : Type u}

def add [has_add α] :
Π {n : N}, vector α n → vector α n → vector α n

| ._ nil nil := nil
| ._ (cons a v) (cons b w) := cons (a + b) (add v w)

def add' [has_add α] :
Π {n : N}, vector α n → vector α n → vector α n

| .(0) nil nil := nil
| .(n+1) (@cons .(α) n a v) (cons b w) := cons (a + b) (add' v w)

4.8 Match Expressions

Lean supports a match ... with ... construct similar to ones found in most functional programming
languages. The syntax is as follows:

match t1, ..., tn with
| p11, ..., p1n := s1
...
| pm1, ..., pmn := sm

32 Chapter 4. Declarations

The Lean Reference Manual, Release 3.3.0

Here t1, ..., tn are any terms in the context in which the expression appears, the expressions pij are
patterns, and the terms si are expressions in the local context together with variables introduced by the
patterns on the left-hand side. Each si should have the expected type of the entire match expression.

Any match expression is interpreted using the equation compiler, which generalizes t1, ..., tn, defines
an internal function meeting the specification, and then applies it to t1, ..., tn. In contrast to the
definitions in Section 4.7, the terms ti are arbitrary terms rather than just variables, and the expression can
occur anywhere within a Lean expression, not just at the top level of a definition. Note that the syntax here
is somewhat different: both the terms ti and the patterns pij are separated by commas.

def foo (n : N) (b c : bool) :=
5 + match n - 5, b && c with

| 0, tt := 0
| m+1, tt := m + 7
| 0, ff := 5
| m+1, ff := m + 3
end

When a match has only one line, the vertical bar may be left out. In that case, Lean provides alternative
syntax with a destructuring let, as well as a destructuring lambda abstraction. Thus the following definitions
all have the same net effect.

def bar1 : N × N → N
| (m, n) := m + n

def bar2 (p : N × N) : N :=
match p with (m, n) := m + n end

def bar3 : N × N → N :=
λ ⟨m, n⟩, m + n

def bar4 (p : N × N) : N :=
let ⟨m, n⟩ := p in m + n

4.9 Structures and Records

The structure command in Lean is used to define an inductive data type with a single constructor and to
define its projections at the same time. The syntax is as follows:

structure foo (a : α) extends bar, baz : Sort u :=
constructor :: (field1 : β1) ... (fieldn : βn)

Here (a : α) is a telescope, that is, the parameters to the inductive definition. The name constructor
followed by the double colon is optional; if it is not present, the name mk is used by default. The keyword
extends followed by a list of previously defined structures is also optional; if it is present, an instance of each
of these structures is included among the fields to foo, and the types βi can refer to their fields as well. The
output type, Sort u, can be omitted, in which case Lean infers to smallest non-Prop sort possible. Finally,
(field1 : β1) ... (fieldn : βn) is a telescope relative to (a : α) and the fields in bar and baz.

The declaration above is syntactic sugar for an inductive type declaration, and so results in the addition of
the following constants to the environment:

• the type former : foo : Π (a : α), Sort u

• the single constructor :

4.9. Structures and Records 33

The Lean Reference Manual, Release 3.3.0

foo.constructor : Π (a : α) (_to_foo : foo) (_to_bar : bar)
(field1 : β1) ... (fieldn : βn), foo a

• the eliminator foo.rec for the inductive type with that constructor

In addition, Lean defines

• the projections : fieldi : Π (a : α) (c : foo) : βi for each i

where any other fields mentioned in βi are replaced by the relevant projections from c.

Given c : foo, Lean offers the following convenient syntax for the projection foo.fieldi c:

• anonymous projections : c.fieldi
• numbered projections : c.i

These can be used in any situation where Lean can infer that the type of c is of the form foo a. The
convention for anonymous projections is extended to any function f defined in the namespace foo, as
described in Section 5.3.

Similarly, Lean offers the following convenient syntax for constructing elements of foo. They are equivalent
to foo.constructor b1 b2 f1 f1 ... fn, where b1 : foo, b2 : bar, and each fi : βi :

• anonymous constructor: ⟨ b1, b2, f1, ..., fn ⟩

• record notation:

{ foo . to_bar := b1, to_baz := b2, field1 := f1, ...,
fieldn := fn }

The anonymous constructor can be used in any context where Lean can infer that the expression should
have a type of the form foo a. The unicode brackets are entered as \< and \> respectively. The tokens (|
and |) are ascii equivalents.

When using record notation, you can omit the annotation foo . when Lean can infer that the expression
should have a type of the form foo a. You can replace either to_bar or to_baz by assignments to their
fields as well, essentially acting as though the fields of bar and baz are simply imported into foo. Finally,
record notation also supports

• record updates: { t with ... fieldi := fi ...}

Here t is a term of type foo a for some a. The notation instructs Lean to take values from t for any field
assignment that is omitted from the list.

Lean also allows you to specify a default value for any field in a structure by writing (fieldi : βi := t).
Here t specifies the value to use when the field fieldi is left unspecified in an instance of record notation.

universes u v

structure vec (α : Type u) (n : N) :=
(l : list α) (h : l.length = n)

structure foo (α : Type u) (β : N → Type v) : Type (max u v) :=
(a : α) (n : N) (b : β n)

structure bar :=
(c : N := 8) (d : N)

structure baz extends foo N (vec N), bar :=
(v : vec N n)

34 Chapter 4. Declarations

The Lean Reference Manual, Release 3.3.0

#check foo
#check @foo.mk
#check @foo.rec

#check foo.a
#check foo.n
#check foo.b

#check baz
#check @baz.mk
#check @baz.rec

#check baz.to_foo
#check baz.to_bar
#check baz.v

def bzz := vec.mk [1, 2, 3] rfl

#check vec.l bzz
#check vec.h bzz
#check bzz.l
#check bzz.h
#check bzz.1
#check bzz.2

example : vec N 3 := vec.mk [1, 2, 3] rfl
example : vec N 3 := ⟨[1, 2, 3], rfl⟩
example : vec N 3 := (| [1, 2, 3], rfl |)
example : vec N 3 := { vec . l := [1, 2, 3], h := rfl }
example : vec N 3 := { l := [1, 2, 3], h := rfl }

example : foo N (vec N) := ⟨1, 3, bzz⟩

example : baz := ⟨⟨1, 3, bzz⟩, ⟨5, 7⟩, bzz⟩
example : baz := { a := 1, n := 3, b := bzz, c := 5, d := 7, v := bzz}
def fzz : foo N (vec N) := {a := 1, n := 3, b := bzz}

example : foo N (vec N) := { fzz with a := 7 }
example : baz := { fzz with c := 5, d := 7, v := bzz }

example : bar := { c := 8, d := 9 }
example : bar := { d := 9 } -- uses the default value for c

4.10 Type Classes

(Classes and instances. Anonymous instances. Local instances.)

4.10. Type Classes 35

The Lean Reference Manual, Release 3.3.0

36 Chapter 4. Declarations

CHAPTER

FIVE

OTHER COMMANDS

5.1 Universes and Variables

The universe command introduces a special variable ranging over a type universe level. After the command
universe u, a definition or theorem that is declared with a variable ranging over Sort u is polymorphic over
that universe variable. More generally, universe level variables can appear in any universe level expression.
The universes command can be used to introduce a list of universe level variables.

The variable command introduces a single variable declaration, and the variables command introduces
one more more variable declarations. These have no effect until a subsequent definition or theorem declara-
tion, though variables can also be used in a #check command. When Lean detects a variable name occuring
in a definition or theorem, either in the type or the body, it inserts that variable and all the variables it
depends on into the local context, as though they have all been declared before the colon. In other words,
the declaration is abstracted over those variables. Only the variables that appear and their dependences are
added, and are inserted in the order that they were declared.

Variables may be annotated as implicit as described in Section 3.3. You can change the annotation of
a variable that has previously been declared using another variable or variables command, listing the
variables with the desired annotation, but omitting their types.

Variables that are only used within a tactic block are not automatically included, since the meaning of a
name in the context of a tactic block cannot be predicted at parse time. You can force the inclusion of
a variable or list of variables in every declaration using the include command. To undo the effect of an
include command, use omit.

universe u
variables {α β : Type u}
variable y : α
variable z : α

def ident (x : α) := x

theorem ident_eq : ∀ x : α, ident x = x := λ x, rfl

theorem ident_eq' : ident y = y := rfl

variables {y z}

variable h : y = z

example : ident z = y := eq.symm h

include h
example : ident z = y :=

37

The Lean Reference Manual, Release 3.3.0

begin
symmetry,
exact h
end

omit h

variable (y)

def ident2 := y

5.2 Sections

The scope of a universe or variable declaration can be scoped in a section. A section begins with a
command section foo and ends with a command end foo, where foo is an arbitrary name. Alternatively,
you can begin a section with the command section along, and close it with end. The name only serves to
help match section/end pairs, and otherwise does not play any role.

Sections also support the commands parameter and parameters. These are similar to variable and
variables respectively, except that within the section, later invocations of definitions and theorems that
depend on the parameters introduced by these commands do not mention those parameters explicitly. In
other words, the parameters are thought of as being fixed throughout the section, whereas definitions and
theorems defined in terms of them maintain that fixed dependence. Outside the section, the definitions and
theorems are generalized over those variables, just as with the variables command.

section
variables (x y : N)

def foo := x + y

#check (foo : N → N → N)
end

section
parameters (x y : N)

def bar := x + y

#check (bar : N)
#check (bar + 7 : N)
end

As with the variable and variables commands, variables introduced with parameter and parameters can
be annotated as implicit, and the annotations can be changed after the fact with subsequent declarations
that omit the type. The include and omit commands can be used with these variables as well.

Sections also delimit the scope of local attributes and notation declarations.

5.3 Namespaces

The commands namespace foo ... end foo, where foo is a declaration name, open and close a namespace
named foo. Within the namespace, foo is added as a prefix to all declarations. So, for exampe, def bar
adds an object named foo.bar to the environment, and declares bar to be an alias for foo.bar while the

38 Chapter 5. Other Commands

The Lean Reference Manual, Release 3.3.0

namespace is opened. If there is already an object or alias bar in the environment, the name is overloaded.
Within the namespace, foo.bar is preferred when an ambiguity needs to be resolved. The prefix _root_
can always be used to specify a full name starting at the top level, so that _root_.bar refers to the object
whose full name is bar.

Namespaces can be nested. In terms of scoping, namespaces behave like sections. For example, variables
declared in a namespace stay in scope until the end command.

The command open foo opens the namespace, so that foo.bar is aliased to bar. Once again, if there is
already an object or alias bar in the environment, the name is overloaded (with none of them preferred).
The open command admits these variations:

• open foo (bar baz) : create aliases only for bar and baz

• open foo (renaming bar -> baz) : renames bar to baz when opening foo

• open foo (hiding bar) : omits creating an alias for bar when opening baz

Multiple instances of hiding and renaming can be combined in a single `open command.

The export command is similar to open, except that it serves to copy aliases from one namespace to another,
or to the top level. For example, if a file exports bar from namespace foo to the top level, then any file that
imports it will have the alias for foo.

Declarations within a namespace can bear the protected modifier. This means that a shortened alias is not
generated when the namespace is open. For example, nat.rec is protected, meaning that opening nat does
not generate an alias rec.

Declarations in a namespace or at the top level can also bear the private modifier, which means that they
are added to the environment with an internally generated name and hidden from view outside the file. An
alias is generated at the point where the declaration is made and it survives until the namespace is closed,
or to the end of the file if the declaration is at the top level. Thus if we declare private def bar := ...
in namespace foo, we can only refer to the object bar until the namespace is closed.

def baz := 7

namespace foo
namespace bar

def baz := 5
def fzz := 9
protected def bloo := 11
private def floo := 13

example : foo.bar.baz = 5 := rfl
example : bar.baz = 5 := rfl
example : baz = 5 := rfl
example : _root_.baz = 7 := rfl

end bar

example : bar.baz = 5 := rfl
end foo

section
open foo.bar

example : fzz = 9 := rfl
-- baz is overloaded and hence ambiguous
example : foo.bar.baz = 5 := rfl
end

section

5.3. Namespaces 39

The Lean Reference Manual, Release 3.3.0

open foo.bar (renaming fzz -> bzz)

example : bzz = 9 := rfl
example : foo.bar.bloo = 11 := rfl
end

export foo (bar.baz)

example : bar.baz = 5 := rfl

export foo.bar

example : fzz = 9 := rfl

If t is an element of an inductive type or family foo, then any function bar defined in the namespace foo can
be treated as a “projection” using the anonymous projector notation described in Section 4.9. Specifically,
if the first argument to foo.bar is of type foo, then t.bar x y z abbreviates foo.bar t x y z. More
generally, as long as foo.bar has any argument of type foo, then t.bar x y z is interpreted as the result
of applying foo.bar to x, y, and z, inserting t at the position of the first argument of type foo.

variables (xs ys : list N) (f : N → N)

#check xs.length
#check xs.append ys
#check (xs.append ys).length
#check xs.map f
#check xs.reverse.reverse

example : [1, 2, 3].reverse.map (λ x, x + 2) = [5, 4, 3] := rfl

5.4 Attributes

Objects in Lean can bear attributes, which are tags that are associated to them, sometimes with additional
data. You can assign an attribute foo to a object by preceding its declaration with the annotation attribute
[foo] or, more concisely, @[foo].

You can also assign the attribute foo to a object bar after it is declared by writing attribute [foo] bar.
You can list more than one attribute and more than one name, in which case all the attributes are assigned
to all the objects at once.

Finally, you can assign attributes locally by using local attribute instead of attribute. In that case, the
attribute remains associated with the object until the end of the current section or namespace, or until the
end of the current file if the command occurs outside any section or namespace.

The set of attributes is open-ended since users can declare additional attributes in Lean (see Chapter 7. You
can ask Lean to give you a list of all the attributes present in the current environment with the command
#print attributes. Below are some that are commonly used:

• [class] : a type class

• [instance] : an instance of a type class

• [priority n] : sets the class resolution priority to the natural number n

• [refl] : a reflexivity rule for the reflexivity tactic, for the calc environment, and for the simplifier

• [symm] : a symmetry rule for the symmetry tactic

40 Chapter 5. Other Commands

The Lean Reference Manual, Release 3.3.0

• [trans] : a transitivity rule for the transitivity tactic, for the calc environment, and for the
simplifier

• [congr] : a congruence rule for the simplifier

• [simp]: a simplifier rule

• [recursor] : a user-defined elimination principle, used, for example, by the induction tactic

Note that the class command, as discussed in Section 4.10, does more than simply assign the attribute.

There are attributes that control how eagerly definitions are unfolded during elaboration:

• [reducible] : unfold freely

• [semireducible] : unfold when inexpensive (the default)

• [irreducible] : do not unfold

There are also attributes used to specify strategies for elaboration:

• [elab_with_expected_type] : elaborate the arguments using their expected type (the default)

• [elab_simple] : elaborate arguments from left to right without propagating information about their
types.

• [elab_as_eliminator] : uses a separate heuristic to infer higher-order parameters; commonly used
for eliminators like recursors and induction principles

def foo (x : N) := x + 5

attribute [simp]
theorem bar1 (x : N) : foo x = x + 5 := rfl

@[simp] theorem bar2 (x : N) : foo x = x + 5 := rfl

theorem bar3 (x : N) : foo x = x + 5 := rfl

theorem bar4 (x : N) : foo x = x + 5 := rfl

attribute [simp] bar3 bar4

#print attributes

5.5 Options

Lean maintains a number of internal variables that can be set by users to control its behavior. You can set
such an option by writing set_option <name> <value>.

One very useful family of options controls the way Lean’s pretty-printer displays terms. The following options
take a value of true or false:

• pp.implicit : display implicit arguments

• pp.universes : display hidden universe parameters

• pp.coercions : show coercions

• pp.notation : display output using defined notations

• pp.beta : beta reduce terms before displaying them

5.5. Options 41

The Lean Reference Manual, Release 3.3.0

As an example, the following settings yield much longer output:

set_option pp.implicit true
set_option pp.universes true
set_option pp.notation false
set_option pp.numerals false

#check 2 + 2 = 4
#reduce (λ x, x + 2) = (λ x, x + 3)
#check (λ x, x + 1) 1

5.6 Instructions

Commands that query Lean for information are generally intended to be transient, rather than remain
permanently in a theory file. Such commands are typically preceded by a hash symbol.

• #check t : check that t is well-formed and show its type

• #print t : print information about t

• #reduce t : use the kernel reduction to reduce t to normal form

• #eval t : use the bytecode evaluator to evaluate t

The form of the output of the #print command varies depending on its argument. Here are some more
specific variations:

• #print definition : display definition

• #print inductive : display an inductive type and its constructors

• #print notation : display all notation

• #print notation <tokens> : display notation using any of the tokens

• #print axioms : display assumed axioms

• #print options : display options set by user

• #print prefix <namespace> : display all declarations in the namespace

• #print classes : display all classes

• #print instances <class name> : display all instances of the given class

• #print fields <structure> : display all fields of a structure

Here are examples of how these commands are used:

def foo (x : N) := x + 2

#check foo
#print foo
#reduce foo
#reduce foo 2
#eval foo 2

#print notation
#print notation + * -
#print axioms
#print options
#print prefix nat

42 Chapter 5. Other Commands

The Lean Reference Manual, Release 3.3.0

#print prefix nat.le
#print classes
#print instances ring
#print fields ring

In addition, Lean provides the command run_cmd to execute an expression of type tactic unit on an empty
goal. (See Chapter 7.)

5.7 Notation Declarations

Lean’s parser is a Pratt-style parser, which means that tokens can serve separate functions at the beginning of
an expression and in the middle of an expression, and every expression has a “left-binding power.” Roughly,
tokens with a higher left-binding power bind more tightly as an expression is parsed from left to right.

The following commands can be used in Lean to declare tokens and assign a left-binding power:

• reserve infix `tok`:n

• reserve infixl `tok`:n

• reserve infixr `tok`:n

• reserve prefix `tok`:n

• reserve postfix `tok`:n

In each case, tok is a string of characters that will become a new token, n is a natural number. The
annotations infix and infixl mean the same thing, and specify that the infix notation should associate to
the left. The keywords prefix and postfix are used to declare prefix and postfix notation, respectively.

Instance of the notation can later be assigned as follows:

• infix tok := t

where t is the desired interpretation, and similarly for the others. Notation can be overloaded.

It is not necessary to reserve a token before using it in notation. You can combine the two steps by writing

• infix `tok`:n := t

Note that in this case, backticks are needed to delimit the token. If a left binding power has already been
assigned using the reserve keyword, it cannot be reassigned by an ordinary notation declaration. A later
reserve command can, however, change the left binding power.

Surrounding the token by spaces in an infix declaration (that is, writing ` tok `) instructs Lean’s pretty
printer to use extra space when displaying the notation. The spaces are not, however, part of the token. For
example, all the following declarations are taken from the core library:

notation `Prop` := Sort 0
notation f ` $ `:1 a:0 := f a
notation `∅` := has_emptyc.emptyc _
notation h1 ▶ h2 := eq.subst h1 h2
notation h :: t := list.cons h t
notation `[` l:(foldr `, ` (h t, list.cons h t) list.nil `]`) := l
notation `∃!` binders `, ` r:(scoped P, exists_unique P) := r

Note that, here, too, left-binding powers can be assigned on the fly, and backticks need to be used to enclose
a token if it has not been declared before.

5.7. Notation Declarations 43

The Lean Reference Manual, Release 3.3.0

More examples can be found in the core library, for example in this file, which shows the binding strength of
common symbols. The implication arrow binds with strength 25, denoted by std.prec.arrow in that file.
Application has a high binding power, denoted std.prec.max. For postfix notation, you may wish to use
the higher value, std.prec.max_plus. For example, according to the definition of the inv notation there, f
x 1 is parsed as f (x 1).

The last two examples make possible list notation like [1, 2, 3] and the exists-unique binder, respectively.
In the first, foldr specifies that the iterated operation is a right-associative fold, and binds the result to l.
The four arguments then specify the separation token (in this case a comma, to be followed by a space when
pretty printing), the fold operation, the start value, and the terminating token. You can use foldl instead
for a left-associative fold.

In the last example, binders specifies that any number of binders can occur in that position, and the anno-
tation after the comma indicates that these binders are to be iteratively abstracted using exists_unique.

Notation declarations can be preceded by the word “local,” in which case the notation only remains in use
in the current section or namespace, or in the current file if it is declared outside of any namespace.

Remember that you can use the #print notation command to show the notation that has been declared
in the current environment. Given a token, it shows the notation associated with the token. Without
arguments, it displays all notation currently in use. You can also use set_option pp.notation false to
turn off the pretty-printing of notation.

44 Chapter 5. Other Commands

https://github.com/leanprover/lean/blob/master/library/init/core.lean

CHAPTER

SIX

TACTICS

6.1 Tactic Mode

Anywhere an expression is expected, Lean will accept a sequence of instructions bracketed by the keywords
begin and end. The input between these keywords represents a tactic, typically a compound sequence of
basic tactics, each possibly applied to suitable arguments, separated by commas. When processing such a
tactic block, Lean’s elaborator executes the compound tactic with the expectation that it will produce an
expression of the required type.

Individual tactics act on one or more goals, each of the form a : α ⊢ p, where a : α is a context and p
is the target type. Tactics are typically used to prove a theorem, in which case p is a Prop, but they can be
used to construct an element of an arbitrary Type as well.

At the outset, the elaborator presents the tactic block with a goal that consists of the local context in which
the expression is being elaborated together with its expected type. Individual tactics can change goals and
introduce new subgoals. A sequence of tactics is done when no subgoals remain, that is, when the compound
tactic has succeeded in constructing an expression of the requisite type.

Tactics can fail. For example, a tactic may fail to make progress, or may not be appropriate to the goal.
Other tactics can catch or handle those failures (see Section 6.6), but otherwise an error message is presented
to the user.

Results produced by tactics are checked by the kernel for correctness. This provides another possible point
of failure: a tactic block can, in principle, claim success but produce a term that fails to type check.

Tactics are themselves Lean expressions of a special tactic type. This makes it possible to implement
Lean tactics in Lean itself; see Chapter 8. Tactics in a begin ... end block, however, are parsed in a
special interactive mode that provides a more convenient manner of expression. In this section, we will focus
exclusively on this interactive syntax.

You can use the keyword by instead of begin ... end to invoke a single tactic rather than a comma-
separated sequence.

example (p q : Prop) : p ∧ q → q ∧ p :=
begin

intro h,
cases h,
split,
repeat { assumption }

end

example (p q : Prop) : p ∧ q → q ∧ p :=
assume ⟨h1, h2⟩,
and.intro (by assumption) (by assumption)

45

The Lean Reference Manual, Release 3.3.0

The documentation below coincides with documentation strings that are stored in the Lean source files and
displayed by editors. The argument types are as follows:

• id : an identifier

• expr : an expression

• <binders> : a sequence of identifiers and expressions (a : α) where a is an identifier and α is a Type
or a Prop.

An annotation t? means that the argument t is optional, and an annotation t* means any number of
instances, possibly none. Many tactics parse arguments with additional tokens like with, at, only, *, or ⊢,
as indicated below. The token * is typically used to denote all the hypotheses, and ⊢ is typically used to
denote the goal, with ascii equivalent |-.

6.2 Basic Tactics

intro id?

If the current goal is a Pi / forall ∀ x : t, u (resp. let x := t in u) then intro puts x : t
(resp. x := t) in the local context. The new subgoal target is u.

If the goal is an arrow t → u, then it puts h : t in the local context and the new goal target
is u.

If the goal is neither a Pi/forall nor begins with a let binder, the tactic intro applies the tactic
whnf until the tactic intro can be applied or the goal is not head reducible. In the latter case,
the tactic fails.

intros id*

Similar to intro tactic. The tactic intros will keep introducing new hypotheses until the goal
target is not a Pi/forall or let binder.

The variant intros h1 ... hn introduces n new hypotheses using the given identifiers to name
them.

introv id*

The tactic introv allows the user to automatically introduce the variables of a theorem and
explicitly name the hypotheses involved. The given names are used to name non-dependent
hypotheses.

Examples:

example : ∀ a b : nat, a = b → b = a :=
begin
introv h,
exact h.symm
end

The state after introv h is

a b : N,
h : a = b
⊢ b = a

example : ∀ a b : nat, a = b → ∀ c, b = c → a = c :=
begin
introv h1 h2,

46 Chapter 6. Tactics

The Lean Reference Manual, Release 3.3.0

exact h1.trans h2
end

The state after introv h1 h2 is

a b : N,
h1 : a = b,
c : N,
h2 : b = c
⊢ a = c

rename id id

The tactic rename h1 h2 renames hypothesis h1 to h2 in the current local context.

apply expr

The apply tactic tries to match the current goal against the conclusion of the type of term. The
argument term should be a term well-formed in the local context of the main goal. If it succeeds,
then the tactic returns as many subgoals as the number of premises that have not been fixed
by type inference or type class resolution. Non-dependent premises are added before dependent
ones.

The apply tactic uses higher-order pattern matching, type class resolution, and first-order unifi-
cation with dependent types.

fapply expr

Similar to the apply tactic, but does not reorder goals.

eapply expr

Similar to the apply tactic, but only creates subgoals for non-dependent premises that have not
been fixed by type inference or type class resolution.

apply_with expr (tactic.apply_cfg)

Similar to the apply tactic, but allows the user to provide a apply_cfg configuration object.

apply_instance

This tactic tries to close the main goal ... ⊢ t by generating a term of type t using type class
resolution.

refine expr

This tactic behaves like exact, but with a big difference: the user can put underscores _ in the
expression as placeholders for holes that need to be filled, and refine will generate as many
subgoals as there are holes.

Note that some holes may be implicit. The type of each hole must either be synthesized by the
system or declared by an explicit type ascription like (_ : nat → Prop).

assumption

This tactic looks in the local context for a hypothesis whose type is equal to the goal target. If
it finds one, it uses it to prove the goal, and otherwise it fails.

change expr (with expr)? (at (* | (⊢ | id)*))?

change u replaces the target t of the main goal to u provided that t is well formed with respect
to the local context of the main goal and t and u are definitionally equal.

change u at h will change a local hypothesis to u.

6.2. Basic Tactics 47

The Lean Reference Manual, Release 3.3.0

change t with u at h1 h2 ... will replace t with u in all the supplied hypotheses (or *), or
in the goal if no at clause is specified, provided that t and u are definitionally equal.

exact expr

This tactic provides an exact proof term to solve the main goal. If t is the goal and p is a term
of type u then exact p succeeds if and only if t and u can be unified.

exacts ([expr, ...] | expr)

Like exact, but takes a list of terms and checks that all goals are discharged after the tactic.

revert id*

revert h1 ... hn applies to any goal with hypotheses h1 ... hn. It moves the hypotheses and
their dependencies to the target of the goal. This tactic is the inverse of intro.

generalize id? : expr = id

generalize : e = x replaces all occurrences of e in the target with a new hypothesis x of the
same type.

generalize h : e = x in addition registers the hypothesis h : e = x.

admit

Closes the main goal using sorry.

contradiction

The contradiction tactic attempts to find in the current local context an hypothesis that is
equivalent to an empty inductive type (e.g. false), a hypothesis of the form c_1 ... = c_2
... where c_1 and c_2 are distinct constructors, or two contradictory hypotheses.

trivial

Tries to solve the current goal using a canonical proof of true, or the reflexivity tactic, or the
contradiction tactic.

exfalso

Replaces the target of the main goal by false.

clear id*

clear h1 ... hn tries to clear each hypothesis hi from the local context.

specialize expr

The tactic specialize h a1 ... an works on local hypothesis h. The premises of this hypoth-
esis, either universal quantifications or non-dependent implications, are instantiated by concrete
terms coming either from arguments a1 … an. The tactic adds a new hypothesis with the same
name h := h a1 ... an and tries to clear the previous one.

by_cases expr (with id)?

by_cases p with h splits the main goal into two cases, assuming h : p in the first branch, and
h : ¬ p in the second branch.

This tactic requires that p is decidable. To ensure that all propositions are decidable via classical
reasoning, use local attribute classical.prop_decidable [instance].

by_contradiction id?

If the target of the main goal is a proposition p, by_contradiction h reduces to goal to proving
false using the additional hypothesis h : ¬ p. If h is omitted, a name is generated automati-
cally.

48 Chapter 6. Tactics

The Lean Reference Manual, Release 3.3.0

This tactic requires that p is decidable. To ensure that all propositions are decidable via classical
reasoning, use local attribute classical.prop_decidable [instance].

by_contra id?

An abbreviation for by_contradiction.

6.3 Equality and Other Relations

reflexivity

This tactic applies to a goal whose goal has the form t ~ u where ~ is a reflexive relation, that
is, a relation which has a reflexivity lemma tagged with the attribute [refl]. The tactic checks
whether t and u are definitionally equal and then solves the goal.

refl

Shorter name for the tactic reflexivity.

symmetry

This tactic applies to a goal whose target has the form t ~ u where ~ is a symmetric relation,
that is, a relation which has a symmetry lemma tagged with the attribute [symm]. It replaces
the goal with u ~ t.

transitivity ?expr

This tactic applies to a goal whose target has the form t ~ u where ~ is a transitive relation,
that is, a relation which has a transitivity lemma tagged with the attribute [trans].

transitivity s replaces the goal with the two subgoals t ~ s and s ~ u. If s is omitted, then
a metavariable is used instead.

6.4 Structured Tactic Proofs

Tactic blocks can have nested begin ... end blocks and, equivalently, blocks { ... } enclosed with curly
braces. Opening such a block focuses on the current goal, so that no other goals are visible within the nested
block. Closing a block while any subgoals remain results in an error.

assume (: expr | <binders>)

Assuming the target of the goal is a Pi or a let, assume h : t unifies the type of the binder
with t and introduces it with name h, just like intro h. If h is absent, the tactic uses the name
this. If T is omitted, it will be inferred.

assume (h1 : t1) ... (hn : tn) introduces multiple hypotheses. Any of the types may be
omitted, but the names must be present.

have id? (: expr)? (:= expr)?

have h : t := p adds the hypothesis h : t to the current goal if p a term of type t. If t is
omitted, it will be inferred.

have h : t adds the hypothesis h : t to the current goal and opens a new subgoal with target
t. The new subgoal becomes the main goal. If t is omitted, it will be replaced by a fresh
metavariable.

If h is omitted, the name this is used.

let id? (: expr)? (:= expr)?

6.3. Equality and Other Relations 49

The Lean Reference Manual, Release 3.3.0

let h : T := p adds the hypothesis h : t := p to the current goal if p a term of type t. If t
is omitted, it will be inferred.

let h : t adds the hypothesis h : t := ?M to the current goal and opens a new subgoal ?M
: t. The new subgoal becomes the main goal. If t is omitted, it will be replaced by a fresh
metavariable.

If h is omitted, the name this is used.

suffices id? (: expr)?

suffices h : t is the same as have h : t, tactic.swap. In other words, it adds the hy-
pothesis h : t to the current goal and opens a new subgoal with target t.

show expr

show t finds the first goal whose target unifies with t. It makes that the main goal, performs
the unification, and replaces the target with the unified version of t.

from expr

A synonym for exact that allows writing have/suffices/show ..., from ... in tactic mode.

variables (p q : Prop)

example : p ∧ (p → q) → q ∧ p :=
begin

assume h : p ∧ (p → q),
have h1 : p, from and.left h,
have : p → q := and.right h,
suffices : q, from and.intro this h1,
show q, from ‹p → q› h1

end

example (p q : Prop) : p → p → p :=
begin

assume h (h' : p),
from h

end

example : ∃ x, x = 5 :=
begin

let u := 3 + 2,
existsi u, reflexivity

end

6.5 Inductive Types

The following tactics are designed specifically to work with elements on an inductive type.

induction expr (using id)? (with id*)? (generalizing id*)?

Assuming x is a variable in the local context with an inductive type, induction x applies in-
duction on x to the main goal, producing one goal for each constructor of the inductive type, in
which the target is replaced by a general instance of that constructor and an inductive hypothesis
is added for each recursive argument to the constructor. If the type of an element in the local
context depends on x, that element is reverted and reintroduced afterward, so that the inductive
hypothesis incorporates that hypothesis as well.

50 Chapter 6. Tactics

The Lean Reference Manual, Release 3.3.0

For example, given n : nat and a goal with a hypothesis h : P n and target Q n, induction
n produces one goal with hypothesis h : P 0 and target Q 0, and one goal with hypotheses h
: P (nat.succ a) and ih1 : P a → Q a and target Q (nat.succ a). Here the names a and
ih1 ire chosen automatically.

induction e, where e is an expression instead of a variable, generalizes e in the goal, and then
performs induction on the resulting variable.

induction e with y1 ... yn, where e is a variable or an expression, specifies that the se-
quence of names y1 ... yn should be used for the arguments to the constructors and inductive
hypotheses, including implicit arguments. If the list does not include enough names for all of
the arguments, additional names are generated automatically. If too many names are given, the
extra ones are ignored. Underscores can be used in the list, in which case the corresponding
names are generated automatically.

induction e using r allows the user to specify the principle of induction that should be used.
Here r should be a theorem whose result type must be of the form C t, where C is a bound
variable and t is a (possibly empty) sequence of bound variables

induction e generalizing z1 ... zn, where z1 ... zn are variables in the local context,
generalizes over z1 ... zn before applying the induction but then introduces them in each goal.
In other words, the net effect is that each inductive hypothesis is generalized.

cases (id :)? expr (with id*)?

Assuming x is a variable in the local context with an inductive type, cases x splits the main goal,
producing one goal for each constructor of the inductive type, in which the target is replaced by a
general instance of that constructor. If the type of an element in the local context depends on x,
that element is reverted and reintroduced afterward, so that the case split affects that hypothesis
as well.

For example, given n : nat and a goal with a hypothesis h : P n and target Q n, cases n
produces one goal with hypothesis h : P 0 and target Q 0, and one goal with hypothesis h :
P (nat.succ a) and target Q (nat.succ a). Here the name a is chosen automatically.

cases e, where e is an expression instead of a variable, generalizes e in the goal, and then cases
on the resulting variable.

cases e with y1 ... yn, where e is a variable or an expression, specifies that the sequence
of names y1 ... yn should be used for the arguments to the constructors, including implicit
arguments. If the list does not include enough names for all of the arguments, additional names
are generated automatically. If too many names are given, the extra ones are ignored. Underscores
can be used in the list, in which case the corresponding names are generated automatically.

cases h : e, where e is a variable or an expression, performs cases on e as above, but also adds
a hypothesis h : e = ... to each hypothesis, where ... is the constructor instance for that
particular case.

case id id* { tactic }

Focuses on the induction/cases subgoal corresponding to the given introduction rule, optionally
renaming introduced locals.

example (n : N) : n = n :=
begin
induction n,
case nat.zero { reflexivity },
case nat.succ a ih { reflexivity }

end

destruct expr

6.5. Inductive Types 51

The Lean Reference Manual, Release 3.3.0

Assuming x is a variable in the local context with an inductive type, destruct x splits the main
goal, producing one goal for each constructor of the inductive type, in which x is assumed to be
a general instance of that constructor. In contrast to cases, the local context is unchanged, i.e.
no elements are reverted or introduced.

For example, given n : nat and a goal with a hypothesis h : P n and target Q n, destruct
n produces one goal with target n = 0 → Q n, and one goal with target ∀ (a : N), (λ (w :
N), n = w → Q n) (nat.succ a). Here the name a is chosen automatically.

existsi

existsi e will instantiate an existential quantifier in the target with e and leave the instantiated
body as the new target. More generally, it applies to any inductive type with one constructor
and at least two arguments, applying the constructor with e as the first argument and leaving
the remaining arguments as goals.

existsi [e1, ..., en] iteratively does the same for each expression in the list.

constructor

This tactic applies to a goal such that its conclusion is an inductive type (say I). It tries to apply
each constructor of I until it succeeds.

econstructor

Similar to constructor, but only non-dependent premises are added as new goals.

left

Applies the first constructor when the type of the target is an inductive data type with two
constructors.

right

Applies the second constructor when the type of the target is an inductive data type with two
constructors.

split

Applies the constructor when the type of the target is an inductive data type with one constructor.

injection expr (with id*)?

The injection tactic is based on the fact that constructors of inductive data types are injections.
That means that if c is a constructor of an inductive datatype, and if (c t1) and (c t2) are
two terms that are equal then t1 and t2 are equal too.

If q is a proof of a statement of conclusion t1 = t2, then injection applies injectivity to derive the
equality of all arguments of t1 and t2 placed in the same positions. For example, from (a::b) =
(c::d) we derive a=c and b=d. To use this tactic t1 and t2 should be constructor applications
of the same constructor.

Given h : a::b = c::d, the tactic injection h adds two new hypothesis with types a = c
and b = d to the main goal. The tactic injection h with h1 h2 uses the names h1 an h2 to
name the new hypotheses.

injections (with id*)?

injections with h1 ... hn iteratively applies injection to hypotheses using the names h1
... hn.

52 Chapter 6. Tactics

The Lean Reference Manual, Release 3.3.0

6.6 Tactic Combinators

Tactic combinators build compound tactics from simpler ones.

repeat { tactic }

repeat { t } repeatedly applies t until t fails. The compound tactic always succeeds.

try { tactic }

try { t } tries to apply tactic t, but succeeds whether or not t succeeds.

skip

A do-nothing tactic that always succeeds.

solve1 { tactic }

solve1 { t } applies the tactic t to the main goal and fails if it is not solved.

abstract id? { tactic }

abstract id { t } tries to use tactic t to solve the main goal. If it succeeds, it abstracts the
goal as an independent definition or theorem with name id. If id is omitted, a name is generated
automatically.

all_goals { tactic }

all_goals { t } applies the tactic t to every goal, and succeeds if each application succeeds.

any_goals { tactic }

any_goals { t } applies the tactic t to every goal, and succeeds if at least one application
succeeds.

done

Fail if there are unsolved goals.

fail_if_success { tactic }

Fails if the given tactic succeeds.

success_if_fail { tactic }

Succeeds if the given tactic succeeds.

guard_target expr

guard_target t fails if the target of the main goal is not t.

guard_hyp id := expr

guard_hyp h := t fails if the hypothesis h does not have type t.

6.7 The Rewriter

rewrite ([(←? expr), ...] | ←? expr) (at (* | (⊢ | id)*))? tactic.rewrite_cfg?

rewrite e applies identity e as a rewrite rule to the target of the main goal. If e is preceded by
left arrow (← or <-), the rewrite is applied in the reverse direction. If e is a defined constant, then
the equational lemmas associated with e are used. This provides a convenient way to unfold e.

rewrite [e1, ..., en] applies the given rules sequentially.

6.6. Tactic Combinators 53

The Lean Reference Manual, Release 3.3.0

rewrite e at l rewrites e at location(s) l, where l is either * or a list of hypotheses in the
local context. In the latter case, a turnstile ⊢ or |- can also be used, to signify the target of the
goal.

rw

An abbreviation for rewrite.

rwa

rewrite followed by assumption.

erewrite

A variant of rewrite that uses the unifier more aggressively, unfolding semireducible definitions.

erw

An abbreviation for erewrite.

subst expr

Given hypothesis h : x = t or h : t = x, where x is a local constant, subst h substitutes x
by t everywhere in the main goal and then clears h.

6.8 The Simplifier and Congruence Closure

simp only? (* | [(* | (- id | expr)), ...]?) (with id*)? (at (* | (⊢ | id)*))? tactic.
simp_config_ext?

The simp tactic uses lemmas and hypotheses to simplify the main goal target or non-dependent
hypotheses. It has many variants.

simp simplifies the main goal target using lemmas tagged with the attribute [simp].

simp [h1 h2 ... hn] simplifies the main goal target using the lemmas tagged with the attribute
[simp] and the given hi’s, where the hi’s are expressions. These expressions may contain under-
scores, in which case they are replaced by metavariables that simp tries to instantiate. If a hi
is a defined constant f, then the equational lemmas associated with f are used. This provides a
convenient way to unfold f.

simp [*] simplifies the main goal target using the lemmas tagged with the attribute [simp] and
all hypotheses.

simp * is a shorthand for simp [*].

simp only [h1 h2 ... hn] is like simp [h1 h2 ... hn] but does not use [simp] lemmas

simp [-id1, ... -idn] simplifies the main goal target using the lemmas tagged with the at-
tribute [simp], but removes the ones named idi.

simp at h1 h2 ... hn simplifies the non-dependent hypotheses h1 : T1 … hn : Tn. The tactic
fails if the target or another hypothesis depends on one of them. The token ⊢ or |- can be added
to the list to include the target.

simp at * simplifies all the hypotheses and the target.

simp * at * simplifies target and all (non-dependent propositional) hypotheses using the other
hypotheses.

simp with attr1 ... attrn simplifies the main goal target using the lemmas tagged with any
of the attributes [attr1], …, [attrn] or [simp].

54 Chapter 6. Tactics

The Lean Reference Manual, Release 3.3.0

dsimp only? (* | [(* | (- id | expr)), ...]?) (with id*)? (at (* | (⊢ | id)*))? tactic.
dsimp_config?

dsimp is similar to simp, except that it only uses definitional equalities.

simp_intros id* only? (* | [(* | (- id | expr)), ...]?) (with id*)? tactic.
simp_intros_config?

simp_intros h1 h2 ... hn is similar to intros h1 h2 ... hn except that each hypothesis is
simplified as it is introduced, and each introduced hypothesis is used to simplify later ones and
the final target.

As with simp, a list of simplification lemmas can be provided. The modifiers only and with
behave as with simp.

unfold id* (at (* | (⊢ | id)*))? tactic.unfold_config?

Given defined constants e1 ... en, unfold e1 ... en iteratively unfolds all occurrences in the
target of the main goal, using equational lemmas associated with the definitions.

As with simp, the at modifier can be used to specify locations for the unfolding.

unfold1 id* (at (* | (⊢ | id)*))? tactic.unfold_config?

Similar to unfold, but does not iterate the unfolding.

dunfold id* (at (* | (⊢ | id)*))? tactic.dunfold_config?

Similar to unfold, but only uses definitional equalities.

delta id* (at (* | (⊢ | id)*))?

Similar to dunfold, but performs a raw delta reduction, rather than using an equation associated
with the defined constants.

unfold_projs

This tactic unfolds all structure projections.

trace_simp_set

Just construct the simp set and trace it. Used for debugging.

ac_reflexivity

Proves a goal with target s = t when s and t are equal up to the associativity and commutativity
of their binary operations.

ac_refl

An abbreviation for ac_reflexivity.

cc

Tries to prove the main goal using congruence closure.

6.9 Other Tactics

trace_state

This tactic displays the current state in the tracing buffer.

trace a

trace a displays a in the tracing buffer.

6.9. Other Tactics 55

The Lean Reference Manual, Release 3.3.0

type_check expr

Type check the given expression, and trace its type.

apply_opt_param

If the target of the main goal is an opt_param, assigns the default value.

apply_auto_param

If the target of the main goal is an auto_param, executes the associated tactic.

dedup

Renames hypotheses with the same name.

6.10 Conversions

6.11 The SMT State

56 Chapter 6. Tactics

CHAPTER

SEVEN

PROGRAMMING

7.1 The Virtual Machine

7.2 Monads

(Describe instances of monads and monadic notation.)

57

The Lean Reference Manual, Release 3.3.0

58 Chapter 7. Programming

CHAPTER

EIGHT

METAPROGRAMMING

8.1 Quotations

8.2 User Defined Attributes

59

The Lean Reference Manual, Release 3.3.0

60 Chapter 8. Metaprogramming

CHAPTER

NINE

LIBRARIES

9.1 The Standard Library

9.2 The Mathematics Library

9.3 Other Libraries

9.4 User-Maintained Libraries

61

The Lean Reference Manual, Release 3.3.0

62 Chapter 9. Libraries

BIBLIOGRAPHY

[Dybjer] Dybjer, Peter, Inductive Families. Formal Aspects of Computing 6, 1994, pages 440-465.

63

	Using Lean
	Using Lean Online
	Using Lean with VSCode
	Using Lean with Emacs
	Using the Package Manager

	Lexical Structure
	Symbols and Commands
	Identifiers
	String Literals
	Char Literals
	Numeric Literals
	Quoted Symbols
	Doc Comments
	Field Notation

	Expressions
	Universes
	Expression Syntax
	Implicit Arguments
	Basic Data Types and Assertions
	Constructors, Projections, and Matching
	Structured Proofs
	Computation
	Axioms

	Declarations
	Declaration Names
	Contexts and Telescopes
	Basic Declarations
	Inductive Types
	Inductive Families
	Mutual and Nested Inductive Definitions
	The Equation Compiler
	Match Expressions
	Structures and Records
	Type Classes

	Other Commands
	Universes and Variables
	Sections
	Namespaces
	Attributes
	Options
	Instructions
	Notation Declarations

	Tactics
	Tactic Mode
	Basic Tactics
	Equality and Other Relations
	Structured Tactic Proofs
	Inductive Types
	Tactic Combinators
	The Rewriter
	The Simplifier and Congruence Closure
	Other Tactics
	Conversions
	The SMT State

	Programming
	The Virtual Machine
	Monads

	Metaprogramming
	Quotations
	User Defined Attributes

	Libraries
	The Standard Library
	The Mathematics Library
	Other Libraries
	User-Maintained Libraries

	Bibliography

